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ABSTRACT 

 

Test and verification are a crucial stage in the 
development of an IP (intellectual property) core. Using 
industry standard techniques, an extensive series of tests 
are performed, looking for possible failures in the design. 
This paper describes an approach that can be used to 
accelerate the test and verification of IP cores such as 
microcontrollers, coprocessors, communication 
controllers and others, using a standard Ethernet interface. 
Instead of running an extensive set of testbenches on a 
simulator, a test environment is set up in which a large 
part of the functional verification is replaced by actual 
execution in hardware. A case study is presented in which 
the presented method is applied in the verification of an 
open source 8-bit microcontroller IP core, drastically 
reducing total verification time. To a large extent, the 
proposed method is technology and operating system 
independent. The proposed method is supplementary to 
the conventional methods based on testbenches, enabling 
the designer to choose between both approaches for each 
test case. 

 

1. INTRODUCTION 

 
Functional verification is a fundamental phase of 

circuit design, in which all functionalities should be 
exercised in order to guarantee operation according to the 
original specifications. It is usually a complex and time 
demanding task, frequently consuming more than half of 
the computer and human resources dedicated to this kind 
of project [1]-[2]. If performed late in the design process 
and the resulting implementation does not match the 
specified features, enormous commercial losses can occur 
[3]. 

The verification process usually includes several 
distinct techniques. Commonly, typical use cases and 
corner case tests are manually chosen, implemented and 
applied. Functional and timing simulations are performed, 
usually as part of an automated test suite. After the 
hardware is considered ready, extensive high-level (i.e., 
application) tests are executed. Additionally, when 
suitable, pseudo-random stimuli can also be used [3]. 
Since most of these tests are usually performed via a 
simulator, when the device under test (DUT) contains a 
high number of circuit nodes, this operation can be highly 
time consuming. 

Two traditional approaches to circuit verification are 
the “golden design” (or reference model) and self-

checking testbenches. In the golden design (Fig. 1) 
approach (also called golden chip, of gold vectors), a 
reference model is instantiated side by side with the DUT, 
and the same set of input stimuli is applied to both units. 
The resulting outputs are then compared, and should be 
equal within the expected tolerance. 

 

 
Figure 1.   Golden design approach. 

 
If self-checking testbenches are also used (Fig. 2), as 

in [4]-[7], the DUT is usually instantiated inside the 
testbench top-level entity. The testbench itself will then 
generate the appropriate stimuli, and compare the DUT 
outputs with known results, or even with a different 
implementation of the same algorithm.  

 
Figure 2.   A self-checking testbench. 

 
In both cases, if a comprehensive test coverage must 

be achieved, the corresponding simulations will be very 
time consuming. 

The approach proposed in this paper allows the 
designer to replace part (or most) of these simulations 
with actual execution of the test cases in the DUT, 
implemented in an FPGA. A case study is included in the 
paper for the verification of an 8-bit open source 
microcontroller (an Atmel AVR clone), where simulation 
runs requiring hours to be executed on a high-end PC 
were replaced successfully with the actual execution of 
test code in the DUT, reducing the average time to run a 
test case to less than a second. This time gain allowed the 
development of more extensive test sets, improving the 
effectiveness of the verification process. 

 

 



 

2. PROPOSED METHOD 

 
Many IP cores operate on data available in RAM, 

either on-chip or off-chip. Examples include 
microprocessors, which execute instructions stored in a 
program memory; video controllers, in which pixel data is 
stored in a dedicated memory section; or many other 
DMA (direct memory access) capable peripherals.  

Traditionally, the initial contents of such memories are 
specified in simulations via memory initialization files. 
These memories are then connected to the DUT by 
instantiation inside a top-level entity, which will then 
coordinate the process of feeding data to the IP core 
being tested. However, in a complex architecture, the 
number of clock cycles needed to execute even a simple 
application can be prohibitively high, and a test case may 
take several hours to complete. 

The proposed approach (Fig. 3) consists in the 
following steps: 

1) Synthesize the DUT to an FPGA, along with: 
a) an Ethernet interface (more specifically, the 

MAC – media access controller – stage); 
b) an on-chip memory; 
c) an interface block, used to initialize the 

Ethernet MAC and control the test sequence. 
2) Generate memory initialization files containing the 

test programs to be executed on the DUT. 
3) Use a PC tool to coordinate the process of 

transmitting the data to the on-chip memory, starting the 
DUT, and reading back the outputs of the process. 

4) The PC is then used to check the results against the 
golden vectors, and restarts the process until all tests are 
run. 

 

Figure 3.   Test setup for the proposed method. 

 
As can be seen, the only requirements are a set of 

software tools (which are all freely available, either from 
open sources or provided by FPGA vendors) and a board 
containing an FPGA chip and a physical Ethernet 
interface. This setup can be run in practically any 
operating system supported by the FPGA vendor, and 
integrates easily with the standard tools composing the 
original FPGA design flow. 

It is worth mentioning that most current FPGA 
development suites support real-time updating and read 
back of on-chip memories, which can aid in the initial 
setup and debugging. This eliminates the need to update 
the entire FPGA configuration whenever new test data 
must be sent for evaluation. 

 

3. STUDY CASE: MICROCONTROLLER 

 

The proposed technique was used in the verification 
of an open core microcontroller IP (an Atmel AVR 
clone), which was being considered for utilization in a 
real industrial application. The selected microcontroller 
IP core was available via the OpenCores Project website 
(opencores.org), as a synthesizable description in VHDL 
language. However, like most non-commercial cores, it 
had never undergone formal verification or rigorous 
performance tests.  

 

3.1. Microcontroller Selection 

 

The work described in this paper was part of a larger, 
industry sponsored project, which also included the 
selection of an adequate 8-bit microcontroller under the 
following requirements: 

i) The project should be an implementation of an 
existing, commercial product. 

ii) Availability of documentation, describing the 
implemented functions and design limitations. 

iii) Availability of testbenches. 
iv) Support tools for software development. 
v) Preferably described in VHDL. 
vi) It should be a design with recent updates.  
 
A total of thirty three microcontroller designs were 

surveyed and evaluated. However, due to the ample 
requirements, no one could be found that satisfied all of 
the original goals. Especially hard to find were designs 
with a proper documentation, which reinforced the need 
for a commercial counterpart with documentation 
available from other sources. 

Another important requirement is the availability of 
testbenches, which help understand the core’s internal 
working, operations sequencing and the values of control 
signal and buses. Most of the surveyed projects provided 
some sort of test data demonstrating basic design 
functions; however, few of them were actual testbenches 
implemented in an HDL. The larger part included only 
software tests in Assembly language, performing tasks 
such as printing messages on a serial port, arithmetic 
calculations, or reading and writing to a memory section. 

Among all surveyed candidates, four processor 
models were selected, with one or more implementations 
available for each one. The selected microcontrollers 
included the Intel 8051, Zilog Z80, Motorola 6805, and 
Atmel AVR. 

A more detailed examination of these preselected 
cores was then performed, more specifically, studying the 
available documentation and code, and running brief 
operational tests. Eventually, the project named AVR 
Core was chosen. This project is recent, described in 
VHDL, consumes few logic resources in the FPGA (less 
than 2,000 LUTs and 800 registers), can use freely 
available C and Assembly compilers, and also featured a 
software tool to convert the generated binary code into 



VHDL, which is useful for debugging both the 
microcontroller and the initial test setup. On the 
downside, no testbenches were available.   

 

3.2. Initial Tests of the AVR Core 

 

The selected microcontroller is a RISC CPU, code-
compatible with the Atmel ATmega103. Its features 
include 32 × 8-bit general purpose registers, up to 128 kB 
of program and 64 kB of data memory, a UART, two 8-
bit timer/counters, and two parallel ports. The core also 
supports the AVR port of the uC/OS-II real-time 
operating system kernel. 

 

 
After correctly synthesizing the core to an FPGA 

development board (containing an Altera Cyclone II 
EP2C35F672C6N device), an initial test setup was 
prepared (Fig. 4), in order to confirm its basic working. 
At this time, the Ethernet interface was not used; instead, 
the generated binary file was converted into a VHDL file 
with a proper tool, and synthesized along with the 
processor code.  

Obviously, this approach in not adequate for the 
execution of a large number of test cases, since the FPGA 
programming bitstream would have to be regenerated and 
reprogrammed for each test case. Nevertheless, the core 
was tested with several ASM and C programs, until its 
basic operation was found to be satisfactory. 

 

3.3. Speeding Up Tests with the Proposed Method 

 

The initial test setup presented in Section III.B clearly 
has many disadvantages. First, the entire FPGA design 
must be recompiled; depending on the vendor tools suite, 
this can require all source files in the design to be 
reanalyzed and resynthesized. Second, it involves the 

generation of VHDL code from a software object file, 
unnecessarily adding complexity to what should be a 
software testing process. Third, the FPGA must be 
reprogrammed, and all on-chip peripherals and other 
circuits must be reinitialized. Fourth, it may be extremely 
hard to automate in practice, due to the difficulties of 
integrating a large number of software tools from 
different vendors. 

The tests using the proposed method were executed in 
a custom FPGA board, which included a Cyclone II 
FPGA EP2C8F256C8 and an Ethernet PHY 78Q2123 
chip. The Ethernet-accelerated test setup is shown in Fig. 
5. The process begins with the initial configuration of the 
Ethernet MAC IP core. Since the DUT in this case was a 
microcontroller, its programmability has been exploited 
in order to ease this initialization process; the startup code 
is stored in its ROM, which is automatically executed 
when the processor is run. After that, the processor simply 
awaits the arrival of new test data. 

When a new test program is received via the Ethernet 
interface, the Test Control Unit (TCU) senses it and starts 
the execution. Fig. 6 shows an Ethernet frame being sent 
to the FPGA and captured on the wire using a packet 
sniffing tool. 

 

 

Figure 6.   Frame sent to a test circuit. 

 
In this particular implementation, the maximum test 

program length is equal to the maximum frame length 
enabled by the Ethernet controller, i.e., approximately 
1,500 bytes. Naturally, this could be increased with the 
implementation of additional control logic, but this 
amount was considered enough to run all intended test 
cases. 

At the end of every test program, selected data 
(typically, operation results) are stored back in data 
memory, and the processor indicates the end of a test run 
through a data port. The TCU then transmits the resulting 
test data to the PC, where it is evaluated. These results are 
checked and logged to a test output file, and a new test 
run is then started. 
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Figure 4.   Initial test setup (without the proposed method). 

Figure 5.   Proposed method applied to AVR Core. 



Since we were interested in proving the correctness of 
the processor implementation, test programs were created 
that exercised most instructions from its instruction set.  

 

4. RESULTS 

 
Currently, more than 80% of the documented 

instructions were already tested, and all of the available 
addressing modes. All of the arithmetic, logic, and branch 
instructions were exercised, and matched the expected 
results in all cases. 

The proposed method and the presented test setup 
enabled the execution of all tests sequentially, which 
would be impossible via simulation due to memory and 
processing limitations. When unexpected results were 
found, the test could be quickly re-run in real time, which 
was unthinkable with the simulation approach. All tests 
were performed at a fixed speed of 50 MHz. 

In order to evaluate the performance gain provided by 
the proposed method, a test run with a length of 5×106 
clock cycles was executed in Mentor Graphics Modelsim 
simulator, which required 2,262 seconds (37.7 minutes). 
When executed in real-time in the FPGA, using the 
proposed method, this same test is run in only 100 ms (for 
a clock frequency of 50 MHz). These results indicate that, 
in this case, the proposed method is 22,620 times faster 
than a simulation of the same test code. 

Finally, some faults were inserted in the 
microcontroller to demonstrate that the proposed method 
is capable of identifying errors in design. By examining 
test sequence outputs, the failing tests were identified and 
provided enough information to locate the fault in the 
original circuit.  

Figs. 7 and 8 demonstrate a test sequence in which a 
register is cleared and then incremented 15 times; in the 
end, its value is compared with a hexadecimal value of 
$0F. At the same time, the count value is replicated at one 
of the microcontroller IO ports (Port B, in this case) and 
stored in memory, in order to be evaluated by the PC 
coordinating the tests. Fig. 8 shows the test signals 
captured with a logic analyzer; the count value can be 
seen in port B[3..0]. The test code presented in Fig. 7 is 
the same that was shown in Fig. 6 on the Ethernet wire. 

 

 

Figure 7.   Assembly code for the sample test sequence. 

 

Figure 8.   Test results captured with a logic analyzer. 

 

6. CONCLUSIONS 

 
The approach presented in this paper allows a system 

designer to choose between the traditional simulation 
approach and actual hardware execution for each test 
case, in a larger test sequence. A case study was 
presented, in which the proposed method was applied to 
the verification of an 8-bit open core microcontroller. The 
new test setup provided speed gains of up to 22,620 times  
compared to the simulation-only approach. This time 
savings allowed the development of more extensive test 
sets, improving the effectiveness of the verification 
process. 
Even though the DUT programmability has been 
exploited to ease the initialization process, this is not a 
strict requirement, and the same approach can be applied 
to simpler IP cores like peripherals and coprocessors. To 
a large extent, the proposed method is technology and 
operating system independent.  

The simple requirements of the proposed approach (an 
FPGA with modest on-chip memory, and an Ethernet 
interface) enable its adoption in virtually any 
development system. 
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.org $0008 
000008 ef3f ser TEMP 
000009 bb3a out DDRA, TEMP 
00000a  bb37         out DDRB, TEMP 
00000b          e0a0     ldi r26, $00 
00000c e1b0 ldi r27, $10 
00000d e04f          ldi r20, $0F 
00000e e020         ldi r18, $00     
00000f 3040 loop: cpi r20, $00 
000010 f031           breq check 
000011          bb28                       out PORTB, r18 
000012  932d           st X+, r18 
000013 954a                       dec r20 
000014  9523                 inc r18 
000015 940c            jmp loop 
000016  000f    
000017  302f check: cpi r18, $0F 
000018 f011                        breq ok 
000019  e430                 ldi r19, $40 
00001A  bb3b                 out PORTA, r19 
00001B e230 ok:     ldi r19,$20 
00001C bb3b                 out PORTA, r19 

Int 
PortB[3] 
PortB[2] 
PortB[1] 
PortB[0] 
PortA[5] 
PortA[6] 


