
ANEM - A Didactic 16 Bit Microcontroller

Geraldo José Travassos de Arruda Filho

José Rodrigues de Oliveira Neto

Prof. Dr. João Paulo Cerquinho Cajueiro

Universidade Federal de Pernambuco - UFPE

Abstract

This paper concerns the development and implemen-
tation of a didactic 16 bit Harvard microcontroller
based on the MIPS architecture. We describe its
instruction set and its architecture, emphasizing the
pipelined implementation. Access to memory and pe-
ripheral is described. This microcontroller was succes-
fully implemented on an ALTERA FPGA, with an ex-
ample software to demonstrate peripheral access and
its interruption capabilities.

1 INTRODUCTION

Due to the advances that digital eletronics have been
facing in the last decades, hardware description lan-
guages such as VHDL becomes more relevant every
day. The use of CPLDs and FPGAs allows engi-
neers to progress from concept to functional silicon
very quickly. Furthermore, microcontrollers are now
the key elements of many applications, while SSI and
MSI components, that have been serving as building
blocks for almost forty years, are now nearly obsolet.

In this way, virtually all digital elements in a
project, including the microcontroller itself, can be in-
tegrated in a single FPGA, allowing considerable gain
in performance, reliability, efficiency and size. The so-
called soft-core processors, processors written entirely
in a hardware description language, are now common
and the number of cells in FPGAs has reached a point
in which it’s possible for multi-processor systems to be
synthetized in a single device. Another advantage of
a soft-core is its extreme flexibility, given that its pa-
rameters can be easily changed using simple device
reprogramation[9]. Also, FPGAs can serve as an im-
portant didactic tool for programmable logic design
courses in Computer or Electronic Engineering, al-
lowing an easier migration from theory to practice.
[3] [6] [8]

Today there are many comercial soft-cores, being
Alterar’s Nios IIr[2] and Xilinxr’s Micro Blazer[10]
worth mentioning. However, these soft-cores do not
allow a detailed knowledge of its implementation.
Moreover, they are also intelectual property of its de-
velopers, being mandatory the use of their platforms

for synthesis. They are also not interesting didactic-
wise, mainly because the source-codes are not made
available. This paper describes in detail the develop-
ment of a simple soft-core, based on MIPS[7] archi-
tecture and with microcontroller-like features. It was
named ANEM (portuguese acronym for ANEM não
é MIPS, which translates to “ANEM is not MIPS”)
and it can serve the purpose of being a didactic tool
for under-graduate courses on microprocessors, micro-
controllers or programmable logic devices.

2 INSTRUCTION SET

In MIPS, instructions have three operands, requiring
the address for three registers. Considering a set of
sixteen registers, it would be needed four bits for each
one’s addressing. As Anem16 has instructions only
16 bits wide, it was chosen to use only two operands
per instruction, where an operand is both input and
output, like an 8086 [5].
There are five types of instructions in Anem16:

Types R, S, W, L and J. Type R instructions are
arithmetic instructions. Type S instructions are for
shift and rotation operations, they include a SHAMT
(SHift AMounT) field that indicates the number of
shifts/rotations to be done.

0 3 4 7 8 11 12 15

OPCODE RA RB FUNCType R
{

OPCODE RA SHAMT FUNCType S
{

OPCODE RA RB OFSTType W
{

OPCODE RA BYTEType L
{

OPCODE ADDRESSType J
{
Figure 1: ANEM Instruction types.

Type W instructions include a four bit offset field
instead of the func field. This offset is considered to
be signed, and because of that values from −8 up to
7 are accepted. Type L instructions have only one
operand and an immediate field that is 8 bit wide.
Type J (jump) instructions need a 12 bit field to

tell the jump address. Jumps of this kind affect only
the 12 less significant bits of PC (Program Counter).

The ANEM instruction set is shown on tables 1, 2, 3
and 4. In comparison to MIPS, different instructions
are LIL (Load Immediate Lower byte) and LIU (Load
Immediate Lower byte). Such instructions were added
to allow immediate 16 bits values to be loaded directly
from instructions.

Table 1: Arithmetic Instructions

Instruction Type Opcode Func

ADD R 0000 0010
SUB R 0000 0110
AND R 0000 0000
OR R 0000 0001
XOR R 0000 1111
NOR R 0000 1100
SLT R 0000 0111

Table 2: Jump Instructions

Instruction Type Opcode

J J 1000
JAL J 1001
HAB J 1111
JR W 0111
BEQ W 0110

Table 3: Shift Instructions

Instruction Type Opcode Func

SHL S 0001 0010
SHR S 0001 0001
SAR S 0001 0000
ROL S 0001 1000
ROR S 0001 0100

Table 4: Memory Instruction

Instruction Type Opcode

LW W 0100
SW W 0101
LIU L 1100
LIL L 1101

3 HARDWARE ORGANIZATION

ANEM was designed to be used as a microcontroller.
One of its main features is the memory access system
based on Harvard Architecture. This architecture con-
sists on the use of physical separation between data
and program memories, permitting simultaneous ac-
cess to both of them, resulting in a better performance
when compared to Von Neumann Architecture. In the
present section, the major topics on the hardware or-
ganization used on ANEM project will be detailed.

4 PIPELINE

The ANEM instruction inherited fromMIPS’ a load of
features adequate for pipeline. First of all, all instruc-
tions are the same width, what eases instruction fetch.
The register fields are always in the same position, al-
lowing to read the register file at the same time in
which the type of instruction is determined. Another
important feature is that memory operations only oc-
cur within load and store instructions and there are
many (16) registers, so memory is seldom accessed.
This allows memory address to be calculated in one
pipeline stage and to complete the access in another.
Still regarding the memory, data need to be aligned,
always as 16 bit words, permiting the access to be
always done within one cycle.
To prompt an increase in ANEM’s performance,

instruction execution was divided in five steps: Ins-
truction Fetch (IF), Instruction Decode (ID), Execute
(EX), Memory (MEM) and Write Black (WB). This
scheme is similar to the one described for MIPS in [7].
This way, it is possible to execute up to five instruc-
tions simultaneously. The output of each stage is to
be stored in a register for use in the following stage.
For instance, signals generated in ID are stored in
ID/EX register for use in the EX stage in the next
clock cycle.
In the first stage of datapath, Instruction Fetch,

an instruction is read from memory in the address
pointed by PC (Program Counter register). In ID, the
instruction is decoded: all the control signals needed
for the next steps are generated and the register file
is accessed.
In EX, ALU (Arithmetic and Logical Unit) oper-

ations, address decodification and jump operations
(made to PC at the end of this cycle) occurs. In MEM,
RAM read and write operations are done. Finally, in
WB, results are stored back on the register file.
The technique known as forwarding or bypassing [7]

that creates alternative paths for data along pipeline
was widely used to solve hazards. There are no struc-
tural hazards since it is an Harvard Machine. In fact,
this was the main reason that determined the adop-
tion of this kind of memory archictecture, in oposition
to what is used in MIPS, in which data and program
memory share the same physical memory.

5 MEMORY AND PERIPHERALS

In memory, all words have 16 bits and need to be
aligned. This allows the processor to address up to
128 KB (64 Kwords) to the program and another 128
KB for data. However, not all data memory range is
available for general use because the peripherals are
mapped as memory. The address range from FFD0 up
to FFFF (in hexadecimal) are reserved to peripherals,
physically located outside RAM memory.
There is a component in ANEM called RamPerif-

Controller, which is responsible for atending any data
memory access request from the processor. This unity

decodes the address received to determine if the re-
quest should be sent to RAM memory or to the pe-
ripherals entity, which centers all peripherals and the
interruptions unity in the processor. When an address
is located below the FFD0 (in hexa), the signals are
sent to an external SRAM memory chip.

5.1 Program Memory

To simplify the design, the program memory in
ANEM was implemented using blocks of internal
RAM available in the FPGA itself. ANEM has a
backchannel that permits the program memory con-
tent to be changed through the serial port. For this
to happen, the programer must be enabled (Prog pin
must be kept in high logical level), and a software
must send the code already in binary format following
a simple algorithm. A software was developed using
Processing language [4] to execute the programming
task. Source code and executable binaries for Linux,
Mac and Windows are available.

6 EXCEPTIONS AND INTERRUPTIONS

External interruptions are called simple interruptions,
while internal ones are called exceptions, as in the
MIPS. In this implementation of the ANEM, an in-
terruption or exception forces a jump to an interrup-
tion vector and saves the PC return address in register
$15. A stack must be implemented in software in case
of nested interruptions or sub-rotines.
Interruptions are executed as a new instruction in-

serted into the pipeline, while exceptions can be gen-
erated by ALU when executing an instruction of sub-
traction (overflow and borrow) and addition (overflow
and carry out). Since the ALU is located in the EX
stage while PC Program Counter is located in the IF
stage, it became mandatory the creation of a special
register to store the instruction address that generated
the last exception. This register is located in EX and
is called EPC (Exception Program Counter). This
way, every time an arithmetic exception occurs (and
is not masked), the address to be saved in the register
$15 is available in EPC (in opposition to other types
of interruption, in which the address to be stored is
in PC).
When an interruption occurs, the interruption unit

disables the ocurrence of other interruption and sends
a command to the pipeline control unit. This com-
mand determines if the interruption was generated
by an exception or if it is external and contains the
jump address to treat this interruption. Upon re-
ceiving these signals, the control unity (ID stage of
pipeline) stalls the program execution (in a similar
manner used to avoid control hazards) and inserts a
JAL instruction in the datapath. The jump address
is that given by the interruption unity and the link
address is given by PC or EPC (in exceptions). The
interruptions can only be re-asserted by software, us-
ing the HAB instruction.

7 EXAMPLE

A simple assembler was developed for programming
the ANEM. As a practical example for design test-
ing, the classic memory game Genius was assembled
and programmed to be executed by ANEM. Using
Alterar’s DE2 development board, the game was im-
plemented using leds and push-buttons. A random
sequence is generated by the microcontroller using the
duration of time in which the player pushes the but-
ton. The sequence is displayed using the leds and the
player must repeat it using the push-buttons. Addi-
tionally, data is sent to a computer using a RS232
[1] interface. A software developed in Processing can
then be used as a graphical user interface.

With this simple example, it was possible to use
interruptions and some peripherals: timers for delays
and sequence generation and the UART for commu-
nication with a computer. The code is composed of
699 words of instructions, from 723 lines of code, using
virtually all instructions available, and so accomplish-
ing a quick validation of the microprocessor design. A
software based stack for nested sub-routines using the
JAL instruction was also implemented.

8 CONCLUSION

The microcontroller was developed entirely in VHDL
and implemented in a DE2 development board do-
nated by Alterar. It has a reduced instruction set of
constant size. Peripherals are disposed in a modular
way that permits easy addition or deletion of new el-
ements using a simple mapping. A game of memory
was programmed into the proccessor to show its fun-
cionality. The project design aiming simplicity makes
it suitable for didactic purposes.

The instruction set proved to be quite adequate to
program a 723 line assembly program, with the ex-
ception of the reduced range of the BEQ instructions,
which permits branches of -8 to +7, while in the MIPS
the range is from -128 to 127.

References

[1] Electronic Industries Association. EIA Stan-
dard RS-232-C Interface Between Data Termi-
nal Equipment and Data Communication Equip-
ment Employing Serial Data Interchange. Tele-
byte Technology, 1985.

[2] Altera Coorporation. Nios ii em-
bedded processor. Available online:
http://www.altera.com/products/ip/processors/
nios2/ni2-index.html. Accessed February 2011.

[3] Edson Pedro Ferlin and Valfredo Pilla Júnior.
Microprocessors: From theory to practice, a di-
dactic experience. Frontiers in Education. FIE
2004. 34th Annual, 2004.

[4] Ben Fry and Casey Reas. Processing language.
Available online: http://processing.org/about/.
Accessed February 2011.

[5] Randall Hyde. The Art of Assembly Language.
No Starch Press, 2nd edition, 2003.

[6] Koji Nakano and Yasuaki Ito. Processor, as-
sembler, and compiler design education using an
fpga. 14th IEEE International Conference on
Parallel and Distributed Systems, 2008.

[7] David A. Patterson and John L. Hennessy. Com-
puter Organization And Design. Morgan Kauf-
mann Elsevier, 30 Corporate Drive, Suite 400,
Burlington, MA 01803, USA, 4th edition, 2009.

[8] Murray Pearson, Dean Armstrong, and Tony Mc-
Gregor. Design of a processor to support the
teaching of computer systems. Proceedings of
the First IEEE International Workshop on Elec-
tronic Design, Test and Applications, 2002.

[9] Franjo Plavec. Soft-core processor design. Mas-
ter’s thesis, University of Toronto, 2004.

[10] Xilinx. Microblaze soft pro-
cessor. Available online:
http://www.xilinx.com/tools/microblaze.htm.
Accessed February 2011.

