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Abstract—This paper shows the current stage of development
of an IP Core for sound classification in wireless sensor networks
using Mel-frequency cepstrum (MFCC) and support vector
machine (SVM) algorithms. This way a sensor node can do
the job by itself instead of sensing to another node or a
computer, this represents a great issue for power saving. The
IP Core implementation was validated in software doing bird
identification.

1. INTRODUCTION

The analysis of sounds produced by animals, known as
bioacoustics [1], enables identifying and monitoring species,
estimates biodiversity of certain place, besides facilitating its
study. However the task of capturing the animals sounds must
not meddle (whether happens must be minimum) on its habits.
An alternative to bypass such limitations is using sensor nodes
equipped with a microcontroller and allowing power saving.
For instance, such sensor nodes could capture sound of a given
animal and assess the region’s biodiversity [2], [3].

Howsoever to deal with audio data, the sensor node needs
computational power to perform the job at a rate that depends
of the application. Application such audio processing requires
a lot of CPU time and analog-to-digital converters (A/D) with
high resolution, this issue normally goes against common
sensor nodes platforms available, such as Mica platform [4].

Therefore this works presents the current stage of
development of an IP Core to be used together with a sensor
node. This IP Core is currently in development, and is being
designed to perform animal sound classification in its habitat
in real time.

Artificial intelligence techniques are used to perform the
task of sound classification. Basically two techniques form
the IP Core kernel the Mel-frequency cepstrum coefficients
(MFCC) [5] and Support vector machine (SVM) [6], which
are popular pattern recognition techniques. The classification
process and the mentioned techniques are explained in
Section 2.

This work shows the tests results accomplished in Matlab
to build the MFCC and SVM algorithm models that will be
implemented in VHDL. Also are shown the preliminary test
performed in software and some synthesis results that are
already available. The tests presented use a database of bird
sounds provided by Montana University [7].

The remainder of this paper is organized as follows:
Section 2 describes the process and techniques used for sound

classification; Section 3 describes the database used with
Matlab to validate the algorithm; Section 4 shows the results
and Section 5 shows some conclusions and next tasks.

2. CLASSIFICATION PROCESS

The pattern classification systems are typically divided in
two stages: features extraction (front end) and classification
(back end), as described in [8] and shows in the Fig. 1. The
first block converts the acoustic signal into a set of appropriate
parameters for the classifier. The second block makes the
identification of the type of sound (class) based on parameters

extracted.
input front end: back end: class
signal features extraction > classification identification
Fig. 1. Characterization of the classification process.

In this work was evaluated the performance of the front end
Mel-frequency cepstrum (MFCC) and the back end support
vector machine (SVM). These techniques are described in the
next subsection.

2.1. Front end: MFCC

The classification process can be divided in two stages,
the first one is the extraction of the Mel-frequency cepstrum
coefficients (MFCC) [5]. These coefficients are used in the
SVM classifier as parameter for bird species classification.
A great advantage of using MFCC parameterization is that
it was designed to maintain characteristics of human sound
perception, this is achieved because frequency bands are
equally spaced on mel scale this frequency warping can
allow better sound representation; and due to the ability to
represent the speech amplitude spectrum in a compact form,
for example, in Fig. 2. Another benefit of MFCC is that they
can be used with both periodic and non-periodic signal as
described in [3].

The procedure by which the mel-frequency cepstral
coefficients are obtained consists of several steps, that could
be performed in several ways, as evaluated in [5]. A
straightforward approach to obtain these coefficients of a given
sampled signal is: calculate the discrete fourier transform, take
the magnitude of the resulting signal, take the logarithm of this
magnitude and finally take the discrete cosine transform. This
procedure is illustrated in Fig. 3.
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Fig. 3. Algorithm Block diagram to obtain the MFCC.

2.2. Back end: SVM Classifier

Support vector machine is part of a class of learning
algorithms based on the statistical learning theory,
which implements the principle of the structural risk
minimization [6]. The basic idea of SVM is to map the input
space into a feature space. This mapping can be done linearly
or not, according to the kernel function used for the mapping.
In the feature space, the SVM builds optimal hyperplanes to
separate classes while minimizing the classification error. The
optimal hyperplane can be written as a combination of a few
points in the feature space, called the support vectors of the
optimal hyperplane.

In this work the linear kernel was adopted, due to easy
implementation and good performance, but in the literature,
various possibilities for SVM kernels are presented such as the
polynomial kernel, the radial basis network and the two-layer
perceptron [6].

The SVM (and other kernel methods) can be characterized
as an estimation function f that minimizes

1
NZL(f(Xn)’yn) + M Al (1)
n=1

where H is the space generated by the kernel IC, f = h+ b,
h € Hi,beR and L(f(xn),yn) is the loss function.

The solution for the optimization problem described in (1)
and as determined in theorem of representation [9], is

N
X) = anlC(x,xn) +b. ()
n=1

This expression indicates that the SVM classifier and other
related classifiers are example-based [10], that is, f is
determined in terms of the training examples x,,.

The examples effectively used in the final solution are called
support vectors. In order to minimize the memory used and the
number of calculations, it is convenient to estimate f with few
support vectors. In some applications, the number of support
vectors can be as high as 90% of the training examples. There
are various algorithms for SVM training and the majority
of them have a parameter used to influence the number of
support vector. In this work, the “complexity” parameter C'
was adopted [10].

The Weka software [11] was used to construct the SVM
model to be synthesized. It is a collection of machine learning
algorithms for data mining tasks. Weka is open source software
issued under the GNU General Public License. The linear
kernel SVM classifier from Weka [12] was chosen as it showed
better results for our simulation scenarios.

3. MONTANA DATABASE

The database used in the tests consists of twelve sounds
of bird species in wav format. Each bird specie had twenty
sample sounds. Therefore the database contains 16 synthesized
syllables: 5 single tones (or chirps), 5 harmonic sounds, 5
inharmonic sounds, and 1 two-part syllable [13]. Totaling
560 sound files with sample frequency Fs = 16 kHz and
resolution of 16 bits. This database was provided by Montana
University [7]. The birds species are listed in Table 3. Thus,
the database is composed by 28 different sound types, Item O
through 11 are natural bird species. Item 12 through 27 are
synthetic test signals with deterministic parameters.

Each specie presents different Fig. 4 shows the spectrogram
of a sound segment.
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Fig. 4. A vocalization spectrogram of a bird, the color indicates intensity.

4. RESULTS

The tests were performed with 13-dimensional
mel-frequency cepstral coefficients features vectors, each
sample sound with sample rate of 16 kHz, high pass filtered
at 100 Hz and Hamming windowed 16 ms (256 samples
frames).



TABLE I
LIST OF SOUND TYPES. ITEM 0 THROUGH 11 ARE NATURAL BIRD
SPECIES. ITEM 12 THROUGH 27 ARE SYNTHETIC TEST SIGNALS WITH
DETERMINISTIC PARAMETERS.

Item | Description

0 Mallard Anas platyrhynchos

1 American Crow Corvus brachyrhynchos

2 Canada Goose Branta canadensis

3 Baltimore Oriole Icterus galbula

4 Common Nighthawk Chordeiles minor

5 Killdeer Charadrius vociferous

6 Osprey Pandion haliaetus

7 Northern Cardinal Cardinalis cardinalis

8 Blue Jay Cyanocitta cristata

9 Great Horned Owl Bubo virginianus

10 Trumpeter Swan Cygnus buccinator

11 Herring Gull Larus argentatus

12 Single chirp. Frequency linearly
increases

13 Single chirp. Frequency linearly
decreases

14 Single chirp. Frequency linearly
increases and then decreases

15 Single chirp. Frequency linearly
decreases and then increases

16 Single tone

17 Harmonic chirp. Frequency linearly
increases

18 Harmonic chirp. Frequency linearly
decreases

19 Harmonic chirp. Frequency linearly
increases and then decreases

20 Harmonic chirp. Frequency linearly
decreases and then increases

21 Harmonic tone

22 Inharmonic chirp. Frequency linearly
increases

23 Inharmonic chirp. Frequency linearly
decreases

24 Inharmonic chirp. Frequency linearly
increases and then decreases

25 Inharmonic chirp. Frequency linearly
decreases and then increases

26 Inharmonic tone

27 One syllable has two parts: inharmonic
tone plus inharmonic chirp

The performance of SVM was compared to other
popular classification techniques: k-nearest neighbor algorithm
(KNN) [14] and Tree J4.8 [15], both available in Weka
software. The KNN is technique that belongs to family
IBL (instance based learning), which look for the “nearest
neighbors” to perform classification of new examples. In this
work, the euclidean distance is used as the distance metric. The
Tree J4.8 is machine learning model predictive [15] that can be
represented as a rules set “if-else”. In this model, a importance
parameter is the confidence factor. A smaller confidence factor
incurs less pruning of the tree. The results showed in this
work represents the best results for values of confidence
factor varying between [0,1; 0,25 e 0,5]. Concerning SVM
classification, the LIBSVM library [16] is used, with linear
kernel.

Furthermore, the robustness of the classifiers in noise
presence was assessed with noise addition in database. Each
file was contaminated with additive white gaussian noise

(AWGN), with signal-to-noise ratio (SNR) varying from 30
to 3 dB in steps of 3 or 6 dB. Cross-validation [17] with
10-folds was adopted to test. The original sounds means that
the tests were performed without noise.

The Fig. 5 shows the results using the 12 natural bird sounds
and the Fig. 6 shows the results using the 28 total sounds.
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Fig. 5. Classification performance varying SNR. Tests with 12 natural sounds.
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Fig. 6. Classification performance varying SNR. Tests with 28 sounds.

The SVM and KNN classification performance presents
better results, moreover a little variation with SNR, unlike of
the Tree J4.8.

Although of the KNN classifier presented similar
performance than SVM, it has as a disadvantage for
real-time applications the fact that even after being trained
to classification is still costly because it requires calculating
the values of individual closeness between the test and
training examples. Hence, was chosen to implement the SVM
classifier in VHDL.

4.1. SVM Implementation

This work is under development and its evaluation was
performed in software, as described in Section 2. After
evaluated was started the hardware implementation of the
classifier blocks, the SVM block is under implementation. Its
is being described in VHDL and synthesized to the Altera’s
EP2C20F484C7 FPGA.



Currently this block is able to perform -classification
between four species in Table 4-1, however this is being
improved to it can work with all species.

TABLE II
SVM SYNTHESIS RESULTS TO 500 FEATURES.
Resource Usage Percentage
Combinational Functions 1770 9%
Logic Registers 644 3%
Pins 49 16%
Memory Bits 4096 2%
Multipliers (9 bits) 48 92%

The current description was synthesized to work with 500
features extracted by MFCC and these results are shown in
Table 4-1. Other version of SVM synthesized to allow it to
work with 32, 64 and 200 features. The Fig. 7 shows the
memory usage to each version, other FPGA features usage
remain unchanged.
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Fig. 7. EP2C20F484C7 FPGA memory usage for 32, 64, 200 and 500
features. Remaining FPGA resources still unchanged.

5. CONCLUSIONS

There are several applications to a wireless sensor network
that allow the collection and processing of sounds. The IP
core in development allows to classify the sensor node itself,
using the MFCC and SVM techniques. The results showed
the good performance of SVM classifier compared with the
KNN and J4.8 classifiers, even with the variation of SNR.
Partial results of the synthesis of SVM have shown that even
increasing the number of features did not increase the number
of logic elements, increasing only the memory usage.
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