
LOGIC AND PHYSICAL SYNTHESIS OF A SINGLE PRECISION FLOATING POINT

UNIT

Edson Schlosser, Sidinei Ghissoni and Alessandro Girardi

Federal University of Pampa - UNIPAMPA

Alegrete - RS - Brazil

ABSTRACT

This paper presents the verification and synthesis plan

applied to the design of a single precision floating point

unit (FPU) that follows the IEEE 754 standard for the

representation of binary real numbers. From a proposed

RTL architecture we applied logic synthesis, physical

synthesis, DRC analysis and verification using Synopsys

tools. The development of the architecture was done with

emphasis on applications requiring low power

consumption and area constraints, such as embedded

systems. The operations performed by the FPU are:

addition, subtraction, multiplication and division, with

emphasis on the reusability of blocks that perform basic

functions.

1. INTRODUCTION

The floating point operations in most computer

architectures are performed by different hardware

components [1]. The component responsible for floating

point arithmetic is referred to as Floating Point Unit

(FPU).

The FPU in general is incorporated into the

processing unit, and is used to accelerate the

implementation of different calculations using the

advantages of binary arithmetic in floating point

representation, providing a considerable increase in

computational performance.

The methodology used in this design is based on the

IP-Process [2], adopted by the Brazil-IP program, in

which this design is inserted. The IP-Process

methodology divides the design of an IP-core in four

phases: design, architecture, RTL design and prototyping.

At the design stage functional and nonfunctional

requirements are listed in order to define the project

scope and acceptance criteria.

In the architecture phase the building blocks and

connections are established, providing the basis for the

implementation and verification. In RTL design, the

architecture is described in synthesizable blocks. At this

stage there is the inclusion of code for functional

verification. Finally, the prototyping stage implements

the design in a physical device. This paper aims to

present the results of logical and physical level synthesis

as well as verification for the design of a single precision

Floating Point Unit whose architecture, proposed by [3],

is shown in fig. 1.

The architecture developed also presents a RS232

Figure 1 – Architecture Floating Point Unit

interface included, necessary to facilitate the testing and

to reduce the number of inputs and outputs of the design.

This paper is organized as follows: In Section 2 is

presented the synthesis procedure of the floating point

unit. The results of implementations are showed in

section 3. Finally in Section 4, is presented some

conclusions of this work and ideas for future work.

2. SYNTHESIS PROCEDURE OF THE

FLOATING POINT UNIT

Starting from a RTL code prototyped in FPGA and

validated, we performed the logic synthesis and physical

design and verification using Synopsys tools. In this

design we used the design kit XH 0.35 from X-FAB [4].

Synthesis steps will be presented in the following

sections.

2.1. Logic Synthesis

With the SystemVerilog description of the FPU

architecture and the functionality of the blocks, we

translated it into gate level using standard cells

methodology. The mapping allows the choice of the size

of logic gates, which is crucial in the final performance of

the circuit. According to [5], the mapping technology is

one of the most critical steps and has the greater impact

on the final result, because it defines the construction and

performance of the circuit, as well as power consumption.

In this methodology pre-designed cells are stored in

libraries, and the layout and specifications are available

for use in integrated circuit design. In this design we used

libraries available from X-FAB for the technology XH

0.35.

Making use of the tool Design Compiler, the mapping

can be done automatically with some configurations. The

flow using to perform the logic synthesis can be seen in

Figure 2.

Figure 2 - Flow of logic synthesis using the Design

Compiler tool.

The tool takes as input the RTL circuit description, as

well as archives of technology XH0.35 and the

constraints imposed by the designer. After mapping

defined for the technology, the tool generates a

synthesized design netlist containing the logical level.

2.2. Physical Synthesis and DRC Analysis

The physical synthesis generates the layout of the

chip, producing the mask patterns and getting the

physical representation of the integrated circuit to be

prototyped.

Using the IC Compiler tool we performed the physical

synthesis flow, following some steps until the generation

of the GDSII file that contains the final design to be sent

to the foundry for prototyping. The design flow of IC

Compiler tool can be seen in Figure.3.

Figure 3 - Flow of physical synthesis using the IC

Compiler tool.

The IC Compiler tool needs three input files for the

synthesis.

The first file must contain the environmental

conditions and constraints attached to the project,

determined by the designer. This information is similar to

those presented to the Design Compiler and are organized

in a file with SDC extension obtained in the logic

synthesis stage.

The second file is the netlist generated by Design

Compiler, including I/O pads. According to [6] the input

and output pads have an additional circuit for ESD

protection. Also, the supply voltage pins (VSS and VDD)

are included. We inserted four pairs of VDD and VSS in

order to feed of rings around the pads, serving as a source

for the I/O pads, and also to provide power to the core

logic cells. They was inserted as a pair of voltage source

on each side of the chip.

The third file the tool needs is the position of I/Os

around the chip. An integrated circuit design may be core

or pad limited. The design of the FPU described in this

paper is core limited, because the data input and output is

serial.

Filler pads have to be inserted for creating spaces

between the pads in order to fill the empty space and

maintain the connection of the supply lines of pads. To

enter an exact number of pads fillers, it was necessary to

know the width and height of the chip, as well as the total

number of pads.

All pads fillers must accurately fill the empty space.

For this, we perform an adjustment of the width and

height of the chip in order to correctly enter the spaces

between the fillers, because the width of the pads is fixed.

The FPU includes 12 input/output pads, 8 supply pads

and 4 corners. The width of these pads can be seen in

Table 1.

Table 1 - Width of pads

Pad Width

 Corner 424.2 µm

 I/O 89.6 µm

 Filler 11.2 µm

To adjust the width and height of the chip it was

necessary to check the original size of the chip in order to

perform the calculation and adjustment of the exact

number of fillers needed between the pads.

The data reported by the tool can be seen in Table 2.

Table 2 - Chip and core information

 Width (µm) Height (µm) Area (mm²)

 Core 2088.8 2080 4.344

 Chip 3131.2 3122.4 9.776

 Pad Core 2282.8 2274. 5.191

The calculation of the adjustment was made using

Eq.1.

 () ()

 ()
 ()

The value obtained in nf must be rounded up to get the

exact number of fillers needed between each space. With

Eq. 2 we can obtain the new width and height of the chip.

 () ()

 The variables are the number of fillers per side (nf),

the number of pads per side (np), the number of corners

per side (nc), the width or height of the chip (X), the new

width or height of the chip (X'), the width of the corner

(Wc), the width of the pad (Wp) and width of the filler

(Wf). We found a width of 3178.0 µm and a height of

3110.8 µm. Then, the width and height of the chip were

changed to these values. Fillers were inserted between the

spaces. Table 3 presents the new dimensions of the FPU

design.

Table 3 - Chip and core sizes after filler insertion

 Width (µm) Height (µm) Area (mm²)

 Core 2135 2067 4.413

 Chip 3178 3110.8 9.886

 Pad Core 2329.6 2262.4 5.270

The total area of the chip is about 10mm². Figure 4

presents the filler pads inserted between a corner pad and

two pads I/O, noting that the space was completely filled.

a) Layout without pad

fillers

b) Layout with pad fillers

Figure 4 - Insertion of pad fillers.

The placement order of the pads, as well as the

inclusion of power pads and fillers floorplaning defines

the overall size of the chip, having a direct influence on

the cost of the project.

The next step is the insertion of metal lines for the

supply core. These lines are placed in the empty space

between pad and core, in the form of metal rings, in order

to maintain the distribution of energy to the core. Each

side of the ring has a VDD and a VSS line, which are

connected to power pads.
In addition to the rings, there are metal lines that cross

the core vertically or horizontally. These lines, called

straps, are connected to the power rings, and will supply

the cells inside the core.

After the step of placing the metal supply lines, the

next task is the placement of the standard cells. Here, all

cells that were previously generated by the logic

synthesis are placed into the core. Time constraints

provided by the SDC file are taken into account, in order

to the placement algorithm allocate related cells more

closely, minimizing routing and delay. The required time

constraints are evaluated in this step. However, even with

the accounting of timing during the positioning phase,

there are effects that cannot be overcome only with the

positioning of cells and are analyzed in clock tree

synthesis.

An effect that must be analyzed is the clock skew,

which is characterized by the arrival of the clock signal at

different times for different circuit components. One

reason for this phenomenon is the large difference in

distance traveled by the clock signal between the clock

pad and different cells.

When this occurs, there is a problem with timing in

the circuit, prejudicing the data processing. To solve the

problem of clock skew, the clock tree generation creates

alternative paths and inserts buffers so that the clock

reaches the different blocks of the circuit at the same

time.

The routing is the next design stage. It must connect

all nets inside the circuit.

Figure 5 - Layout obtained after physical synthesis.

After the routing process we must perform the DRC

and antenna analysis. For the DRC analysis we used

Hercules tool, which validate the layout rules from the

GDSII file extraction.

The layout obtained after all stages of physical

synthesis can be seen in Figure 5.

3. RESULTS

Finishing the logic and physical synthesis, we present

some results obtained in tables 4 to 7. The dynamic

power consumption of the entire chip is estimated in

23mW.

The maximum frequency of operation is 17MHz and

37% of the chip is occupied by the core cells.

Table 4 – Core area

 Area (mm²)

 Combinational area 1.862

 Noncombinational area 0.321

 Net Interconnect area 0.513

 Total cell area 2.183

 Total area 2.696

Table 5 – Results of power consumption

 Power consumption

 Cell Internal Power 17.136 mW

 Net Switching Power 5.906 mW

 Cell Leakage Power 3.147 uW

 Total Dynamic Power 23.043 mW

Table 6 – Frequency results

 Frequency operation 17MHz

 Slack 34.08ηs

Table 7 - Area utilization ratios

 Cell/Core Ratio 49.477%

 Cell/Pad Core Ratio 41.428%

 Cell/Chip Ratio 37.056%

4. CONCLUSION

This paper presented the design flow for the

development of an FPU applied to embedded devices.

Making use of commercial tools from Synopsys, such as

Design Compiler for logic synthesis, IC Compiler for

physical synthesis, Hercules for DRC analysis and VCS

tool for verification tests, the GDSII file is generated for

sending to prototyping.

The results presented an operating frequency of

17MHz and a reduced power consumption. The total chip

area was approximately 10mm².

As future work, we intend to verify the low power

aspect that can be obtained by the reuse of the same

architecture in comparison with others designs.

5. REFERENCES

[1] R.V.K Pillai, D. Al-Khalili, A.J. Al-Khalili, “A Low Power

Approach to Floating Adder Design”, Proceedings of the 1997

International Conference on Computer Design (ICCD '97);

1997.

[2] M. S. M. Lima, F. S. D. Santos, J. F. B. Silva, E. N. S.

Barros. “ipPROCESS: A Development Process for Soft IP-core

with Prototyping in FPGA”. In: Forum on Specification and

Design Languages (FDL), 2005, Lausanne. Forum on

Specification and Design Languages (FDL). Lausanne: EPFL,

2005. p. 487-498.

[3] R. Neves, I. Castro; J. Prates, E. R. Schlosser, D. L.

Prediger, S. Ghissoni, A. G. Girardi. “Implementação de uma

Unidade em Ponto Flutuante para Operações Aritméticas em

FPGA”. In: Iberchip 2010, 2010, Foz do Iguaçu. Anais do

Iberchip, 2010.

[4] X-FAB Semiconductor Foundries. “Design Rule

Specification XH035 - 0.35 µm Modular CMOS” Document

DR_035_03, Release 3.3, September 2009.

[5] Marques F. D. S., Junior O.M., Ribas R. P., Junior L. S. D.

R, Reis A. I. Mapeamento Tecnológico no Projeto de Circuitos

Integrados Digitais. Cap: 8. Available in:

http://www.inf.ufrgs.br/logics/docman/book_ufpel_marques.pdf

[6] G. D. Hachtel, R.K Brayton, A. L. S. Vincentelli.“

Multilevel Logic Synthesis”. Vol. 78, No. 2, Pag: 264-300,

February 1990.

