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ABSTRACT 

 

This paper presents the verification and synthesis plan 

applied to the design of a single precision floating point 

unit (FPU) that follows the IEEE 754 standard for the 

representation of binary real numbers. From a proposed 

RTL architecture we applied logic synthesis, physical 

synthesis, DRC analysis and verification using Synopsys 

tools. The development of the architecture was done with 

emphasis on applications requiring low power 

consumption and area constraints, such as embedded 

systems. The operations performed by the FPU are: 

addition, subtraction, multiplication and division, with 

emphasis on the reusability of blocks that perform basic 

functions.  

 

 

1. INTRODUCTION 

 

The floating point operations in most computer 

architectures are performed by different hardware 

components [1]. The component responsible for floating 

point arithmetic is referred to as Floating Point Unit 

(FPU).  

The FPU in general is incorporated into the 

processing unit, and is used to accelerate the 

implementation of different calculations using the 

advantages of binary arithmetic in floating point 

representation, providing a considerable increase in 

computational performance. 

The methodology used in this design is based on the 

IP-Process [2], adopted by the Brazil-IP program, in 

which this design is inserted. The IP-Process 

methodology divides the design of an IP-core in four 

phases: design, architecture, RTL design and prototyping. 

At the design stage functional and nonfunctional 

requirements are listed in order to define the project 

scope and acceptance criteria. 

In the architecture phase the building blocks and 

connections are established, providing the basis for the 

implementation and verification. In RTL design, the 

architecture is described in synthesizable blocks. At this 

stage there is the inclusion of code for functional 

verification. Finally, the prototyping stage implements 

the design in a physical device. This paper aims to 

present the results of logical and physical level synthesis 

as well as verification for the design of a single precision 

Floating Point Unit whose architecture, proposed by [3], 

is shown in fig. 1.  

The architecture developed also presents a RS232 

Figure 1 – Architecture Floating Point Unit 



 

 

interface included, necessary to facilitate the testing and 

to reduce the number of inputs and outputs of the design. 

This paper is organized as follows: In Section 2 is 

presented the synthesis procedure of the floating point 

unit. The results of implementations are showed in 

section 3. Finally in Section 4, is presented some 

conclusions of this work and ideas for future work. 

 

2. SYNTHESIS PROCEDURE OF THE 

FLOATING POINT UNIT 

 

Starting from a RTL code prototyped in FPGA and 

validated, we performed the logic synthesis and physical 

design and verification using Synopsys tools. In this 

design we used the design kit XH 0.35 from X-FAB [4]. 

Synthesis steps will be presented in the following 

sections. 

 

2.1. Logic Synthesis 

 

With the SystemVerilog description of the FPU 

architecture and the functionality of the blocks, we 

translated it into gate level using standard cells 

methodology. The mapping allows the choice of the size 

of logic gates, which is crucial in the final performance of 

the circuit. According to [5], the mapping technology is 

one of the most critical steps and has the greater impact 

on the final result, because it defines the construction and 

performance of the circuit, as well as power consumption. 

In this methodology pre-designed cells are stored in 

libraries, and the layout and specifications are available 

for use in integrated circuit design. In this design we used 

libraries available from X-FAB for the technology XH 

0.35.  

Making use of the tool Design Compiler, the mapping 

can be done automatically with some configurations. The 

flow using to perform the logic synthesis can be seen in 

Figure 2. 

 

 

Figure 2 - Flow of logic synthesis using the Design 

Compiler tool. 

 
The tool takes as input the RTL circuit description, as 

well as archives of technology XH0.35 and the 

constraints imposed by the designer. After mapping 

defined for the technology, the tool generates a 

synthesized design netlist containing the logical level.  

 

2.2. Physical Synthesis and DRC Analysis 

 

The physical synthesis generates the layout of the 

chip, producing the mask patterns and getting the 

physical representation of the integrated circuit to be 

prototyped. 

Using the IC Compiler tool we performed the physical 

synthesis flow, following some steps until the generation 

of the GDSII file that contains the final design to be sent 

to the foundry for prototyping. The design flow of IC 

Compiler tool can be seen in Figure.3. 

 

 

Figure 3 - Flow of physical synthesis using the IC 

Compiler tool. 

The IC Compiler tool needs three input files for the 

synthesis.  

The first file must contain the environmental 

conditions and constraints attached to the project, 

determined by the designer. This information is similar to 

those presented to the Design Compiler and are organized 

in a file with SDC extension obtained in the logic 

synthesis stage.  

The second file is the netlist generated by Design 

Compiler, including I/O pads. According to [6] the input 

and output pads have an additional circuit for ESD 

protection. Also, the supply voltage pins (VSS and VDD) 

are included. We inserted four pairs of VDD and VSS in 

order to feed of rings around the pads, serving as a source 

for the I/O pads, and also to provide power to the core 

logic cells. They was inserted as a pair of voltage source 

on each side of the chip. 

The third file the tool needs is the position of I/Os 

around the chip. An integrated circuit design may be core 

or pad limited. The design of the FPU described in this 

paper is core limited, because the  data input and output is 

serial.  

Filler pads have to be inserted for creating spaces 

between the pads in order to fill the empty space and 

maintain the connection of the supply lines of pads. To 

enter an exact number of pads fillers, it was necessary to 

know the width and height of the chip, as well as the total 

number of pads.  



 

 

All pads fillers must accurately fill the empty space. 

For this, we perform an adjustment of the width and 

height of the chip in order to correctly enter the spaces 

between the fillers, because the width of the pads is fixed. 

The FPU includes 12 input/output pads, 8 supply pads 

and 4 corners. The width of these pads can be seen in 

Table 1. 

 

Table 1 - Width of pads 

Pad Width 

 Corner 424.2 µm 

 I/O 89.6 µm 

 Filler 11.2 µm 

 

To adjust the width and height of the chip it was 

necessary to check the original size of the chip in order to 

perform the calculation and adjustment of the exact 

number of fillers needed between the pads.  

The data reported by the tool can be seen in Table 2. 

 

Table 2 - Chip and core information 

 Width (µm) Height (µm) Area (mm²) 

 Core 2088.8 2080 4.344 

 Chip 3131.2 3122.4 9.776 

 Pad Core 2282.8 2274. 5.191 

 

The calculation of the adjustment was made using 

Eq.1. 
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The value obtained in nf must be rounded up to get the 

exact number of fillers needed between each space. With 

Eq. 2 we can obtain the new width and height of the chip. 
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 The variables are the number of fillers per side (nf), 

the number of pads per side (np), the number of corners 

per side (nc), the width or height of the chip (X), the new 

width or height of the chip (X'), the width of the corner 

(Wc), the width of the pad (Wp) and width of the filler 

(Wf). We found a width of 3178.0 µm and a height of 

3110.8 µm. Then, the width and height of the chip were 

changed to these values. Fillers were inserted between the 

spaces. Table 3 presents the new dimensions of the FPU 

design. 

 

Table 3 - Chip and core sizes after filler insertion 

 Width (µm) Height (µm) Area (mm²) 

 Core 2135 2067 4.413 

 Chip 3178 3110.8 9.886 

 Pad Core 2329.6 2262.4 5.270 

The total area of the chip is about 10mm². Figure 4 

presents the filler pads inserted between a corner pad and 

two pads I/O, noting that the space was completely filled. 

 

 
a) Layout without pad 

fillers 

 
b) Layout with pad fillers 

Figure 4 - Insertion of pad fillers. 

 

The placement order of the pads, as well as the 

inclusion of power pads and fillers floorplaning defines 

the overall size of the chip, having a direct influence on 

the cost of the project.  

The next step is the insertion of metal lines for the 

supply core. These lines are placed in the empty space 

between pad and core, in the form of metal rings, in order 

to maintain the distribution of energy to the core. Each 

side of the ring has a VDD and a VSS line, which are 

connected to power pads. 
In addition to the rings, there are metal lines that cross 

the core vertically or horizontally. These lines, called 

straps, are connected to the power rings, and will supply 

the cells inside the core.   

After the step of placing the metal supply lines, the 

next task is the placement of the standard cells. Here, all 

cells that were previously generated by the logic 

synthesis are placed into the core. Time constraints  

provided by the SDC file are taken into account, in order 

to the placement algorithm allocate related cells more 

closely, minimizing routing and delay. The required time 

constraints are evaluated in this step. However, even with 

the accounting of timing during the positioning phase, 

there are effects that cannot be overcome only with the 

positioning of cells and are analyzed in clock tree 

synthesis.  

An effect that must be analyzed is the clock skew, 

which is characterized by the arrival of the clock signal at 

different times for different circuit components. One 

reason for this phenomenon is the large difference in 

distance traveled by the clock signal between the clock 

pad and different cells.  

When this occurs, there is a  problem with timing in 

the circuit, prejudicing the data processing. To solve the 

problem of clock skew, the clock tree generation creates 

alternative paths and inserts buffers so that the clock 

reaches the different blocks of the circuit at the same 

time.  

The routing is the next design stage. It must connect 

all nets inside the circuit.  

 



 

 

 

Figure 5 - Layout obtained after physical synthesis. 

 

After the routing process we must perform the DRC 

and antenna analysis. For the DRC analysis we used 

Hercules tool, which validate the layout rules from the 

GDSII file extraction. 

The layout obtained after all stages of physical 

synthesis can be seen in Figure 5. 

 

3. RESULTS 

 

Finishing the logic and physical synthesis, we present 

some results obtained in tables 4 to 7. The dynamic 

power consumption of the entire chip is estimated in 

23mW.  

The maximum frequency of operation is 17MHz and 

37% of the chip is occupied by the core cells.  

 

Table 4 – Core area 

 Area (mm²) 

 Combinational area 1.862 

 Noncombinational area 0.321 

 Net Interconnect area 0.513 

 Total cell area 2.183 

 Total area 2.696 

 

Table 5 – Results of power consumption 

 Power consumption 

 Cell Internal Power 17.136 mW    

 Net Switching Power 5.906 mW    

 Cell Leakage Power 3.147 uW 

 Total Dynamic Power 23.043 mW   

 

 

Table 6 – Frequency results 

 Frequency operation 17MHz 

 Slack 34.08ηs 

 

Table 7 - Area utilization ratios 

 Cell/Core Ratio      49.477% 

 Cell/Pad Core Ratio 41.428% 

 Cell/Chip Ratio      37.056% 

 

4. CONCLUSION 

 

This paper presented the design flow for the 

development of an FPU applied to embedded devices. 

Making use of commercial tools from Synopsys, such as 

Design Compiler for logic synthesis, IC Compiler for 

physical synthesis, Hercules for DRC analysis and VCS 

tool for verification tests, the GDSII file is generated for 

sending to prototyping.   

The results presented an operating frequency of 

17MHz and a reduced power consumption. The total chip 

area was approximately 10mm².  

As future work, we intend to verify the low power 

aspect that can be obtained by the reuse of the same 

architecture in comparison with others designs. 
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