
MOTION ESTIMATION WITH DIAMOND SEARCH ALGORITHM FOR THE H.264 STANDARD ENCODER

Victor Hugo Caldas Marinho1, Alba Sandyra Bezerra Lopes1, Ivan Saraiva Silva2, Edgard de
Faria Correa1

{victorhugo,alba}@ lasic.ufrn.br ; edgard@dimap.ufrn.br ; ivan@ ufpi.edu.br
1Federal University of Rio Grande do Norte

2Federal University of Piaui

ABSTRACT

This paper presents an architecture for H.264 Motion
Estimation. The algorithm used in the implementation is
the fast block matching algorithm Diamond Search. This
algorithm reduces the complexity needed to precess video
sequences on the encoder module. The architecture was
implemented in VHDL using Quartus 10.0 and
synthesized using a Stratix III. Results of design cost and
performance are presented.

1. INTRODUCTION

The H.264/AVC is the most advanced video
compression standard with archive its goal reducing in
almost 50% the number of bits needed to represent de
information. This gain is consequence of high level
increase in computational complexity of its modules,
mainly the ME (Motion Estimation) [4].

The ME is the most compute intensive module of a
video encoder, This module takes advantage of temporal
redundancy existent in a video sequence One way to
identify this redundancy is through the similarities
existent between two neighboring frames. Many was
developed to perform this process. These algorithms
should generate efficient results in limited time.

Full Search is considered the only existing optimal
algorithm, since it seeks the best match possible in all
regions of search area. Through extensive testing of the
lower value of distortion is found, however this requires a
high number of operations to perform the process. And
the number of operations increases as much as the size of
search area increases too. [3]

To overcome this disadvantage many algorithms has
been created aiming to reduce this complexity. One of the
fast block-matching algorithm proposed is called
Diamond Search [2]

This work is part of the H.264 Network, that aims
develop Brazilian technology for the SBTVD (Brazilian
Digital Television System).

2. THE DIAMOND SEARCH ALGORITHM (DS)

The DS algorithm employs two search patterns, the
Large Diamond Search Pattern (LDSP) as showed on
Figure 1 and the Small Diamond Search Pattern(SDSP)
[5] as showed on, as shown in figures 1.a and 1.b. The
pattern LDSP comprises nine points, eight of which
circulate a central point, to compose the diamond. The

pattern SDSP consisting of five points to form a small
diamond, for refinement.

Figure 1. SDSP Search Pattern

Figure 2. LDSP Search Pattern

When the algorithm starts the execution, the center of
diamond is equivalent to the center area of research.
When the lowest value of distortions is found in one
vertex of the diamond, is necessary calculate more five
block to form a new diamond Figure 3. If the lowest value
was found in an edge, three new blocks are calculated.

Figure 3. Vertex of the Diamond

Figure 4. Edge of the Diamond

mailto:ivan@ufpi.edu.br
mailto:edgard@dimap.ufrn.br
mailto:alba%7D@lasic.ufrn.br

The LDSP is repeated as many times is necessary until
find the lowest distortion in the center of the diamond. At
this point, the SDSP is started for refinement. Among the
five values of SDSP, the lowest distortion is found, is
generated a motion vector of this position in the search
area.

3. IMPLEMENTATION

The implementation described in this work was based
on [1], with some differences as the use of 8x8 blocks,
instead of 16x16 pixel with subsample, and fixed the
search area 32x32. The distortion criterion used is the
Sum of Absolute Differences (SAD). The architecture has
nine processing units (PU), where each PU can calculate
eight samples in parallel, ie, an entire row of an 8x8
block. Then eight accumulations are needed to generate
the SAD of each block. The block diagram of the
architecture is showed Figure 5, where CB is the
candidated block, SDSP are the building blocks of this
pattern for the current frame and the blocksare LDSP this
standard to the same frame .

Figure 5. Block diagram of the implemented
architecture

The startup DS values are loaded from the research
area selected, nine of the starting blocks LDSP, the four
values of the block and SDSP candidate is investigated in
fifteen auxiliary memories. It also starts at [0.0] the
motion vector, which is the value of the central
framework.

The nine blocks LDSP are calculated in parallel, and
the results is sent to a comparator (Figure 6). Each block
has an associated index, to identify the position of the
block in LDSP. The result of the comparator is the lowest

value of SAD and it sends to the control unit of the index
block. The control unit analyzes this index, and decides
the next step of the algorithm and updates the position of
the central block and motion vector. If the chosen block is
zero, the lowest SAD was found in the center of the
diamond, and the process of refinement (SDSP) should
begin. Since the blocks are stored in the SDS buffer
memory, to calculate the SDSP it is simply just change
the switch of multiplexers that are at the entrance of pus.

Figure 6. Comparator Module

When the index was one, three, five or seven, the
control unity start up the LDSP again assigning the block
found by calculating the center and five new blocks. If the
index is two, four, six or eight, the control unit starts
again the LDSP again, giving the block found by
calculating the center and three new blocks. As previously
mentioned, this step is repeated as many times as
necessary.

The comparator receives the nine values and uses a
pipeline to compare them two by two. In the first stage
compares the values of the blocks in the second the
results of the first stage, resulting in a total of five stages.

The control unit uses a state machine and the index of
the comparator define which values are written into the
memories, when the SAD computation starts and the
standard should be initiated.

4. SYNTHESIS AND VALIDATION RESULTS

The proposed architecture was described in VHDL
and Quartus Web Edition 10.0 was used to synthesize the
total architecture on the Stratix III EP3SL70F484C2
device. For simulations we used the ModelSim Altera
Starter Edition 6.5e .[6]

Words of 128-bits are used to load the search area.
Once the architecture uses 32x32 as search area size, it

takes 64 clock cycles to load an entire search are. To fill
the memories correspondent to 8x8 blocks, 8 clock cycles
are needed. In the best case to fill the memory with al
needed data are needed 35 clock cycles. In the worst case
ever tested, LDSP being repeated ten times, 224 clock
cycles are needed, and the average case, LDSP repeated
five times, 119 clock cycles to produce a result. Table 2
shows the number of frames per second for some video
standards.

Table 1 presents the results of architecture synthesis
on the chosen device. According to the Table 1, the total
architecture uses 18% of the ALUTs available and less
then 1% of the total memory bits available.

Table 1. Diamond Search Synthesis Results

Total Used Total
Available

Total combination
functions (ALUTS)

6.749 54000

Dedicated logic registers 5.198 54.0000
Total block memory bits 16.384 2.267.136

To be perfectly possible to see a video, the DS
must process at least 30 frames per second, using the
number of clock cycles and the dimensions of the video is
possible to evaluate this requirement. The Table 2
presents the performance results of the architecture. It’s is
possible realize that in the best case, the architecture can
process 78 frames per second of a HDTV video, and even
in the worst case, the architecture can also process real
time because the number of frames achieved is 40.

Table 2. Performance Results

Video
Resolution Frames per Second

Best Case Average
Case

Worst Case

SDTV
(720x480) 209 148 108

HDTV
(10280x720) 78 55 40

The complete architecture was validated using real
video sequences and the VHDL were compared with the
implementation of the same Diamond Search algorithm in
C. The validation process proved that the results are valid
and consistent

5. COMPARISON WITH RELATED WORK

In this section is made a comparison of the
implemented Diamond Search architecture with an
implementation of the Full Search algorithm, described
on [3].

Table 3 presents the synthesis results of the Full
Search architecture in the same device as the one used in
this work.

Table 3. Full Search Synthesis Results

Total Used
Total combination functions
(ALUTS)

8.655

Dedicated logic registers 6.486
Total block memory bits 10.420

When comparing the results of synthesis between the
DS and FS, can be observe that the DS takes up less space
and the FS registers and uses morememory blocks.
However, this does not cause a significant increase in the
size of the architecture, making the DS a better choice
than the FS. Table 4 presents the frequency achieved for
both architectures. The frequency of the DS architecture
is higher than the FS architecture. Once this architecture
uses less SAD calculation (as showed on Table 5), the
number of frames per second that it is possible to
compute is sufficient to aim real time for HDTV digital
video.

Table 4. Frequency results

Architecture Frequency
Diamond Search 229.62
Full Search 197.51

Table 5. Number of SAD calcutations
Architecture Number of SAD

calculaitions
Diamond Search
(Best Case)

13

Diamond Search
(Worst Case)

49

Diamond Search
(Average Case)

94

Full Search 625

6. CONCLUSIONS

This paper presented the algorithm in hardware
Diamond Search. Through comparisons with the FS was
found that the DS dramatically reduces the number of
SAD operations, with a small degradation of the results,
occupying less space and with a higher frequency.
.

7. REFERENCES

[1]Porto, Marcelo Schivalon. Arquiteturas de Alto
Desempenho e Baixo Custo em Hardware para Estimação
de Movimento em Vídeos Digitais. 2008.
Dissertação(Mestre em Ciência da Computação) –
Instituto de Informática – Universidade Federal do Rio
Grande do Sul(UFRGS).

[2] Zhu, Shan and Ma, Kai-Kuang, A New Diamond
Search Algorithm for Fast Block-Matching Motion
Estimation.2000. IEEE transactions on image processing,
vol. 9, no. 2.

 [3]Lopes, Alba Sandyra Bezerra, Arquitetura com
Elevada Taxa de Processamento e Reduzida Largura de
Banda de Memória para a Estimação de Movimento de
Vídeos Digitais. 2011. Dissertação(Mestre em Ciência da
Computação) – Departamento de Informática e
Matemática Aplicada – Universidade Federal do Rio
Grande do Norte(UFRN).

[4]Richardson, I. 2003. H.264 and MPEG-4 Video
Compression: Video Coding for Next-Generation
Multimedia. John Wiley&Sons, Chichester.

[5]Kuhn, P. Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation, Kluwe
Academic Plubisher, Boston, 1999.

[6]http://www.altera.com

http://www.altera.com/

