
FUNCTIONAL VERIFICATION OF VERILOG DESIGN USING A
VERISC METHODOLOGY TESTBENCH APPROACH

Adriana Ferreira de Brito, Raphael de Souza Neves, Karina Rocha Gomes da Silva
Escola de Engenharia Elétrica, Mecânica e de Computação

Universidade Federal de Goiás (UFG)

ABSTRACT

Functional verification is a very difficult part of the
entire chip design. It spends almost 70% of the resources.
The focus of this work is to propose a functional
verification methodology for Verilog designs, using the
VeriSC methodology [1] as a basis, and using the Verilog
language to implement the testbench. With this
methodology will be possible to design a testbench that
can identify functional errors as soon as possible in the
Design Under Verification (DUV).

1. INTRODUCTION

Verification aims to ensure that the results of a design
is consistent with the expected. One way to make a
verification process more efficient would be automating
it, making the process faster and more predictable [2].
The testbench is an option to conduct the verification in
order to focus on identify the errors as soon as possible,
because if the errors propagate to the other phases from
the design, it became more difficult to catch them. The
testbench is an environment in which the device to be
verified (Design Under Verification – DUV) receive the
specified stimuli and it results can be compared with the
ideal results, coming from the reference model. With
VeriSC methodology the implementation of the testbench
is performed before to start the development of the DUV,
together with the development of the reference model [1].

There are three types of verification: static, dynamic
and hybrid, the dynamic verification is known as
functional verification “it is the default strategy of the CIs
industry” [3]. Functional Verification has a testbench, that
is an environment composed of reference model (ideal
model), implementing all specified features of device [1]
and the design Under verification (DUV). The testbench
is responsible for the stimuli generation. It also have the
output stimuli from the DUV and compares the Reference
Model output with the output coming from the DUV [4].
The testbench generated stimuli grow to the size and
complexity of the device, then is almost not possible to
make an exhaustive simulation. Because of this, one can
uses constrained random stimuli, with some kind of
coverage to control the randomicity and the parts of the
project that has been verified [1].

There are many methodologies to build a testbench
[5], for example, it is possible to write the linear
testbench where each entry has its continuously variable
and constant input stimuli, resulting in an exponential

increase of stimuli in accordance with the increased
number of sets. It can become impossible the
representation of all combination of input [6]. There is a
methodology to build the testbench using input/output
files, the testbench will have an interface between the
input/output files and the DUV [7]. The testbench can be
made using state machine to generate the input vector,
each entry will be a state [8], or the testbench can be build
using tasks and functions, each task or functions conducts
a functionality, such as task of writing a file which receive
the data and the address like parameter [9]. Between the
methodologies the linear is the easier and simple to write
but it is dependent of the complexity of the project. The
testbench that uses I/O files has to manipulate archives,
the state machine methodology does not support the
building of a robust testbench that is necessary in
complex projects. Testbench using tasks and functions are
more efficient in devices that perform calculations. [6, 7,
8 and 9].

2. VERISC METHODOLOGY

The functional verification methodology underlying
our work is VeriSC [1]. The VeriSC methodology allows
the generation of the complete running testbench before
the implementation of the DUV has been started without
requiring extra code to be written. Hence, the design can
be verified in all necessary phases of its implementation,
mainly at the beginning of the DUV implementation.
Furthermore, the VeriSC methodology can reuse its own
elements to implement the testbenches, to perform a self-
test to reveal errors in the testbenches. [1], leaving the
testbench and simulation done "before the development of
DUV" [4]. In the new verification flow proposed for the
VeriSC it is implemented a mechanism that simulates,
with elements of the testbench, the presence of DUV [1].
In VeriSC the testbench is implemented with the
following blocks: Source, TDriver, TMonitor, Reference
Model and Checker. The stimuli for simulation are
generated by the Source, the Source is linked to
Reference Model and to TDriver. TDriver is an interface
that connect the Source to DUV and does the
communication protocol between these blocks. The
output of DUV is linked to TMonitor, TMonitor is the
interface between DUV and Checker and does the
communication protocol between these blocks. The
Reference Model output is also connected to the Checker
that performs the comparison between the two outputs. To

alex
Text Box
SForum 2012 - Student Forum on Microelectronics
This work has been developed by the first author(s) in the scope of the undergraduate studies

develop the testbench is used the SystemC hardware
description language [1].

3. VERIFICATION WITH VERISC USING
VERILOG

After the verification, the next step in the design flow
is to synthesize the DUV in order to have a netlist. Using
VeriSC with language SystemC is necessary to translate
the SystemC language to languages like Verilog or
VHDL [10]. In order to avoid the use the intermediate
tools is better to build a methodology that have as a base
the main idea of the VeriSC methodology but with the
development of the DUV using Verilog language. This
methodology inherits from VeriSC Methodology the main
idea of building testbench before the DUV, and all the
schema from testbench modules, like TDriver, TMonitor,
Reference Model and Checker, but the stimulus are saved
in archives with test vector, as can be seen in Figure 1.

The Source generates high level stimuli and stores
them. Each generated value will be one input vector of the
Reference Model. A C program converts them to low
abstraction level. The TDriver module, will read the file
and one output stimuli will be assigned the output port,
between the TDriver and the DUV. Then, the
communication protocol (handshake) will ensure no loss
of stimulation between the modules

The Reference Model works in transaction-level data.
It makes it more simple to be implemented. After the
execution of the Reference Model with the same stimuli
as the DUV, the output is recorded in another file, each
line is an output. The DUV receives input stimuli from
the TDriver, it is run and stimuli are obtained from the
output ports, the stimuli are stored in another file. The
TMonitor module is the interface where the output stimuli
are stored in the decimal file, between the DUV and the
TMonitor there is the communication protocol that
ensures the data integrity.

The testbench performs the comparison of the output
file generated by the Reference Model and the output file
generated for DUV, line by line comparing the two files.
If it finds any divergence between the outputs, it will
show which line is divergent in the archives, thus it is
possible to trace which input, or set of entries, that
generated this output stimulus that is divergent in the
DUV file and the Reference Model file. The TDriver,
TMonitor and TDriver are implemented in Verilog.

For the standardization of nomenclature and data aims
to create a file in which the inputs and outputs of each
program are identified.

The proposed methodology schema is shown in Figure
1.

Figure 1: Template of the Methodology

4. RESULTS

Using this methodology almost all the modules are
ready to use before the DUV is ready. The Source and the
Converter modules are almost ready, only needing to set
the stimulus that will be generated: number and size of
the data, because this information may vary depending on
the design. The Reference Model depends on the device
design. The Checker can be fully reused because it only
carries out the comparison of line by line and warning if
the difference between files.

This methodology tested some basic devices like
adder, multiplexer, state machine and dpcm, with these
devices was possible to identify changes that are
necessary according to each project: size of ports, size of
data, number of ports (stimuli), connection between the
TDriver ports and the DUV ports, connection between the
DUV ports and the TMonitor ports and Reference Model.
Using this methodology the Checker code is one hundred
percent done, it is not necessary to change anything. Tests
were also made using the labs (1 to 7) proposed by Altera
[11].

The main test was carried out using the methodology
to implement and verify a device to alert the parents that
they forgot the child in the car, named Smart Car Baby
Seat.

4.1. Adder

Adder device is as simple as the state machine, this
device can verify the correct functioning of the testbench
using VeriSC with Verilog. The methodology was
implemented to generate a data file from the input Source
program, a program was developed for converting
decimal numbers to binary numbers, implemented the
Reference Model and the Checker, all developed in C

language. Used the TDriver and the TMonitor to be the
interface between the DUV and archives, both was
implemented in Verilog. The output file DUV was the
same as the output Reference Model, confirmation was
obtained by Checker.

4.2 DPCM

The methodology VeriSC with Verilog was tested in a
Differential pulse-code modulation (DPCM) design. It is
a device that receives one data and guard in a buffer until
it receives the next. Comparing with the adder design the
DPCM is more complex, it has input data (stimuli) of
different size, and it uses a internal state machine. Even
though it is more complex than adder, using the
methodology, it was easy.

In the Source, Converter, TDriver and TMonitor was
changed the number of stimuli (data) and the length each
one. Reference Model was development for represent the
features of DUV. The Checker not changed anything.

In these devices were used the handshake,
communication protocol, between the TDriver – DUV
and DUV – TMonitor, thus was added the input and
output in TDriver, DUV and TMonitor to do this
communication. The module was changed for support this
protocol, ensuring the integrity of data.

4.3 Smart Car Baby Seat

It was proposed the build a device that would ensure
that the parents or guardians do not forget the kids in the
car baby seat. It works with five sensors: three in the baby
car seat, one in the driver's door and one in the ignition.
Like output, warning of dangers, will be two leds: one
warning that have baby inside the car, and the door is
opened or the key is in the ignition; the other alert is when
the two leds are connected, it warns that have baby inside
the car and the car is closed, probably with no adult in,
because do not have key in ignition and the door is
closed.

The development of device was with six input ports
(five sensors and one clock), two output ports and four
ports for handshake. The methodology VeriSC with
Verilog was used in this design, as the input stimuli are
only one bit for do the Source, it was necessary to change
a few lines in the code, just as in the TDriver and
TMonitor. The Reference Model is basically logic
operation between the seat sensors with ignition sensor
and driver's door sensor. The Checker is ready, have only
run the program for compare the two files, one file
generated by the DUV and other by the Reference Model.

5. CONCLUSIONS

The methodology proved effective with Verilog for
functional verification, incoming stimuli and stimuli in the

output files are saved and you can trace each entry, or set
the input, for each output, or output set. The codes are
reusable, it is necessary some modifications according the
design in the Source, Converter, TDriver and TMonitor.
The Checker is the only that do not have changes to do,
and the Reference Model is the unique that have to be
totally modified. With reusable code the engineer can
save time on the project because the verification will be
faster and more efficient.

Using Verilog in the implementation of the TDriver
and TMonitor makes it possible to implement the DUV in
Verilog, eliminating the translation of a language to
Verilog and avoiding possible mistakes in the DUV code.

6. ACKNOWLEDGMENTS

This work was supported by grants from the CNPq
sponsor agency.

7. REFERENCES

[1] K. R. G. da Silva, “Uma Metodologia de Verificação
Funcional para Circuitos Digitais”, Paraíba, Brasil, 2007.
[2] J. Bergeron, “Writing Testbenches using
SystemVerilog”, Springer Science, New York, USA, pp
2-21, 2006.
[3] E. L. R. Tobar, “Contribuições à Verificação
Funcional Ajustada Por Cobertura Para Núcleos de
Hardware de Comunicação e Multimídia”, São Paulo,
Brasil, 2010.
[4] E. Melcher, “Verificação funcional Curso do
programa Brazil-IP”, http://lad.dsc.ufcg.edu.br, 2012.
[5] Introduction,
http://www.testbench.in/TB_01_INTRODUCTION.html,
2012.
[6] Linear TB,
http://www.testbench.in/TB_02_LINEAR_TB.html,
2012.
[7] FILE I/O TB,
http://www.testbench.in/TB_03_FILE_IO_TB.html ,
2012.
[8] STATE MACHINE BASED TB,
http://www.testbench.in/TB_04_STATE_MACHINE_BA
SED_TB.html , 2012.
[9] TASK BASED TB,
http://www.testbench.in/TB_05_TASK_BASED_TB.htm
l , 2012.
[10] W. Muller, W. Rosenstiel and J. Ruf, “SystemC
Methodologies and Applications”, Kluwer Academic
Publishers, Boston, USA, pp 217-245, 2003.
[11] Digital Logic - Laboratory Exercises,
http://www.altera.com/education/univ/materials/digital_lo
gic/labs/unv-labs.html , 2012.

	FUNCTIONAL VERIFICATION OF VERILOG DESIGN USING A VERISC METHODOLOGY TESTBENCH APPROACH
	Abstract

