Graphical Environment tool for testbench conception

Marcelo Pereira Barros
Escola de Engenharia Elétrica,
Mecénica e de Computagéo
Universidade Federal de Goias

warriorfly@gmail.com

Céssio Leonardo Rodrigues
Instituto de Informéatica
Universidade Federal de Goias

cassio@inf.ufg.br

Alex Mendes Martins
Escola de Engenharia Elétrica,
Mecénica e de Computacéo
Universidade Federal de Goias

alexengcomp@gmail.com

Karina Rocha G. da Silva
Escola de Engenharia Elétrica,
Mecéanica e de Computagéo
Universidade Federal de Goias

karinarg@emc.ufg.br

Adriano Cesar Santana
Escola de Engenharia Elétrica,
Mecénica e de Computacéo
Universidade Federal de Goias

Adriano@emc.ufg.br

ABSTRACT

Functional verification is a very difficult part tfie entire design.
It spends almost 70% of the resources. For thisoreahe
engineers are supposed to use all the necessdsyitoorder to
decrease the verification bugs and costs. Thisrpasents the
creation of an graphical auxiliary tool to desidre thlocks that
will compose the design, in order to generate #wbench to
make the functional verification.

Keywords
Functional Verification, VeriSC, ETBC

1. INTRODUCTION

Functional verification is a technique to demortstréhat the
intent of a hardware design is preserved in itslémentation
[01;02;04]. In fact, there is no consensual funioverification

methodology in the digital circuit industry. Eaclesijn house
tailors its methodology according to the type dfit@l circuit to

be produced, the resources that are available anstraints that
are imposed by the project. However most functiomgification

methodologies comprise four basic components: é) Register
Transfer Level (RTL) design under verification (DYW) a set of
specifications that the design must comply with;ai simulation
mechanism to judge the DUV against its set of dpations; iv)

a mechanism to estimate the level of confidencéeseld during
the functional verification process. Except for tB&JV, the

remaining components are enclosed in an environrehéd

testbench.

The testbenches implementation can take a conbidesamount
of time in the verification process. Some reasomBich can
increase the time for testbench implementationttegenumber of
connections between modules/blocks, the time sfpeatapt the
testbench to the Design Under Verification (DUV)dathe
number of module instances, transaction data strestand
transaction communication channels. A methodoldgyt takes
the complex verification process easier and a todmplement
this methodology and generate automatically testvgmototypes
can be a good approach to reduce the overall tfrpeogect flow.
This paper presents a tool to graphically desiga btock of
modules that compose the hierarchical DUV. Thesigdeas used
to generate a TLN file which is used to input tAi®€ tool [03].
The eTBc (Easy TestBench Creator) is a semi-aufortegtbench
generation tool, which has been used to generattbetech
prototypes used in the VeriSC methodology [01]egslained in

SForum 2012 - Student Forum on Microelectronics
This work has been developed by the first author(s) in the scope ot
the undergraduate studies

the next sections. VeriSC methodology guides the
implementation of working testbenches during hichanal
decomposition and refinement of the design, evdorbehe RTL
implementation starts. More information can beaotsd in [01].

2. EASY TESTBENCH CREATOR

The Easy Testbench Creator (eTBc) is a tool forimetomatic
testbench generation. This tool works as a codeergéor,
receiving two files as input: A Transaction Levekthst (TLN)
file described by the functional verification eng@m (user of
eTBc). This file is a model of the IP-core usin@isaction data
and RTL data. The RTL data used in this level ity tiee name of
modules /O ports. The remaining of the descriptisnonly
transaction data. The language used in this levellBc Design
Language (eDL). eDL is a simple language used tscritee
modules, connections, FIFOs and some data in thel&/El.

The another input file is a template of a testbealgment that
will be generated. The eTBc template is a way ¢i@&c works to
generate testbench elements. The role of templatés guide
eTBc to generate code, based in one TLN.

The TLN defines the model of system and the teraplafines the
model of testbench. The templates are created usifi§c
Template Language (eTL) and there are implememtieglates in
VeriSC methodology for SystemC and Verilog langsagdL is

a language that allows adjustment to a specifithhodlogy and
HDL. If a Verilog/SystemVerilog, VHDL or SystemC egific
methodology wants to generate testbenches in dfispeay, a
template can be written using eTL for this purpose.

alex
Text Box
SForum 2012 - Student Forum on Microelectronics
This work has been developed by the first author(s) in the scope of the undergraduate studies

Templates

4
eTBc

Transaction
Level
Netlist
(TLN)

Prototypes

Figure 1: Architectural Model

01 =truct coeffs {

nz trans {

n3 short cosff [64]:
04

ns =ignals=s{

e =igned[8] in_pgf:
a7 bool walid;

ne bool ready:

a4 T

10 %

11 module PIACDC {

12 input cosfi=s pi_in:

13 output coeffs pi_out:
14 3%

15 module 0T {

16 input coeffs gi_in:

17 output coeffs gi_out:
14

19 module P_unpeg {

20 input cosffs m_in:

21 output coeffs m_out:

22 fifo coeffs pi_agi:

23 PIACDC piacdc i . pi_in{m_in). .pi_cut{pi_gi}):
24 QI gqi_i (. gi_dini{pi_gi), . gi_out(m_out)):
25 1

Figure 2: Source Code written in eDL

As can be seen in the architectural model of thel to
presented in Figure 1, the models are created usiegeTBc
Design Language (eDL). Internally the tool use®decgenerator
and two translators, one to interpret the TLN cade the other to
interpret the code of the templates. The eDL laggua used to
write the TLN code to describe the model. The edihguage is
used to write the templates used by the tool. § wants to port
the tool for a specific methodology, he has to teremew
templates according with this methodology. The eTBa be
adapted to other methodologies and languages tisingemplate
language (eTL). In this case, the verification ngardeam has to
implement your own
methodology. After that, in order to finish thetteench, the user
need to fill the "source” module of VeriSC with mtili
generation and "checker” with all asserts constsaaccording
with the verification plain.

A simple example of TLN written in eDL is shown Higure 2.

This TLN is a model of an 8-bit adder. From thisueple shown
in Figure 2, eTBc can generate all testbench el&sneh the

VeriSC methodology discussed in section 2. Thisehadlitten in

eDL is not restricted only to VeriSC methodologycan be used
in any verification methodology. To use this modéth another
methodology is necessary other templates writteneiBc

Template Language (eTL).

The problem in order to use eTBc is to learn hovntplements
the eDL language. Then, a more intuitive form telements the
TLN code is to design the entire module that corepthe DUV

templates to use with a specific

and automatically infer the TLN code. This is th®eative of the
tool presented in next section.

3. THE GRAPHICAL TOOL

Using the eDL graphical generation tool is posstole
create modules, and each module represents thardhanal
division of the design. The modules can be manuigbigned and
linked according to the communication interfacenfrine design.

Source Code 2: File template_example.txt

$8(file) $$("textfile.txt™)
— — This is an example of eTL language (

VHDL comment)

R -

3 // Put here any HDL code (Verilog
Comment)

4 /# SystemC comment =/

5

6

7

8 §§(foreach) $$(module.in)

9 $$(i.type) $8(i.name);

10 $$(endfor)

11

12 $$(foreach) $$(module.out)

13 $$(i.type) $$(i.name);

14 8§ (endfor)

15

16 3% (endfile)

Figure 3: Source Code written in eTL

The modules and their interfaces are presentectraers, making
the creation and viewing more intuitive. The viswaimmand
makes the design implementation easier, fastemaore intuitive
and allows for better code maintenance. The usercosate the
blocks and the interface communication between rtoglules.
Then, it is necessary to specify what kind of if#ee will be
linking the modules. After that step, the visualbdis are
converted to eDL code. And the eDL code can be tsgénerate
the testbench design.

The application allows also the opposite way, gatireg a visual
presentation of the project by inserting code EDhe software
includes a Tool Window (Figure 4) that allows yauchoose the

form that it will work.

=2

i Select
) Connect
1 Insert Module

i® Graphic
i1 Parser

Save

Figure 4: Tools Window
3.1 Graphic Mode

The graphic mode application can be used sele@irgphic in
the Tools Window. In graphic mode, the Main Windaow be
released for editing, in which the user will inetréo graphically
building the DUV. The eDL source code resulted wik
generated automatically in real time, on the Passetdow, which
is locked for editing.

The Window allows choosing three types of iteratiorihe Main
Window: insert module, connect, and select.

3.1.1 Insert Module

The insert module option allows to insert blockshie window,
simply by pressing the mouse button, drag to defieesize, and
drop. These blocks represent a hierarchical modwdm the
DUV. Using the example shown in Figure 2, piacdmnd qi_i are
instances of modules of PIACDC and QI, respectivahd are
instantiated on a parent module, in this case Pgmpe

When inserting a block, a module is created, aral ghme is
instantiated in the parent module, which is the e first
pressed the mouse button.

Figure 5: Main window

3.1.2 Connect

The connect option, allows the user to connect Ivazks with
arrows by clicking and dragging on a block to aeotfThe user
can connect two children blocks, a parent block thild block or
otherwise.

The connection between the blocks represents the fof
communication between the modules. Again, the elangb
Figure 2 shows that there is an output instancepiatdc_i
(pi_out) connected to an input instance of gi_i ifg) through a
fifo connection (pi_qgi). These interfaces, inputitput and fifo,
represent instances of the structure coeffs.

By clicking on a child block and drag it to another new

structure is created and instantiated in threeuwifft places: in the
parent module, as a fifo, and both children, asiirgnd output.

Then, the blocks are connected by inserting tH@rmnation in the

instance of both modules.

A similar procedure occurs if you connect a pargiock to a
child block, except for the absence of instanae, fithich is not
necessary.

For connections of instances of modules, you can ake the
same output structure connecting the various inpNtge that
after you insert an arrow, are created in additothe arrow, two
small boxes at the ends. These boxes, which ragrése input
and output structures, may be used to make newections,
reusing instances of their structures.

3.1.3 Select

In the select option, the user can be free to asterith graphical
objects created by resizing or moving the blocKse Tiser can
also change the characteristics of an object byblgoalicking.

This opens a properties window (Figures 6-7) withecific

characteristics of the object.

|£ P [=] 5|

Struct Name |coeffs

Add New Struct

FIFO P_mpeqg |pi_qi
Output piacdc_i |pi_out
Input qi_i |gi_in

| Remove Connection

Variable Type n
Variables Trans
Name lcoeﬁi

on [T
Array (54

Figure 6: Properties Window — Connection

The block properties will display the name of thedule that is
instantiated and the instance of the module. F& diven
example, a double click on the block piacdc_i shtivesFigure 7.
Names can be changed and the module instance I(ible) inay
be removed by clicking Remove Instance Module.

The connection properties (Figure 7) will show tieme of the
implemented structure and interfaces (input, ougmd fifo). It is
this window which will be also included variablesx dhe
structure, by first selecting the type of variaftians or signal),
and then adding, removing, renaming or changingénables.

The same structure can be used in multiple coroestiThe
Figure 2 shows that all interfaces are instanceghef same
structure, called coeffs. Thus, the graphic impletaion, after
performed the connections, just modify one of themepresent
the structure coeffs, inserting and renaming theaktes. For
other connections, just change the first box caf¢dict, in the
Properties Window (Figure 8), to reference the satnecture
coeffs. The structures which do not appear in amnection is
automatically rejected. This is also valid for miedy which can
have more than one declared instance.

Finally, the Tools Window still shows the Save buatto export
the EDL generated code directly to a file.

E5) i[=1 k3

Module |PIACDC | v |
Module Name [PIACDC

Add New Module

Instance Module |piacdc_i

| Remove Instance Module |

Figure 7: Properties Window - Instance Module

3.2 Parser Mode

The software still has an inverse way that meetsréiguirements
of compatibility and standardization. Simply selegtthe Parser
in the Tools Window (Figure 4). So the Main Wind¢kigure 5)

is locked for editing by releasing the Parser wind&€hanges
made to the inserted code automatically reflectMiaen Window,

unless you find a bug in the inserted code. Eraues lexical,

syntactic and semantic checked.

The user can still click the Open button in thel tasindow to
select a file with saved eDL code.

4. Results

Using the Graphical Environment (GET) tool in ortéielgenerate
the testbench provide some advantages when compaitbd
making it manually. One big advantage is not hatmfparn how
to build the TLN file. The other advantage is thenber of line
codes that can be saved using the tool. The engiloes not have
to generate any code lines, when using the GET tool

The next table uses code from an MPEG4 decodegriesi
order to make the comparison between number of tiods a
design using the TLN file and using GET tool. TIMPEG4
decoder design is part of Brazil-IP project [7].

Lines of Lines with
TLN GET

Design

MPEG4 25 0

5. CONCLUSIONS

This paper presented a graphical auxiliary toold&sign the
blocks and interfaces that will compose the DUV bhe
implemented. The tool can be used to generate eébtbench.
With this tool the engineer do not need to be comee with any
specific code. He only needs to make a design ©htararchical
DUV and the tool will generate the TLN to be usedhe eTBc
tool.

6. ACKNOWLEDGMENTS

This work was supported by grants from the CNPaqspp
agency.

7. REFERENCES

[1] K.R. G. da Silva, E. U. K. Melcher, I. Maia, and dit N.
Cunha. “A methodology aimed at better integratibn o
functional verification and rtl design”, Design Awmation
for Embedded Systems, Volume 10, Number 4, pp.2Z885-
December 2005

[2] J. Bergeron, editor. Writing Testbenches. SprinBeston,
2003.

[38] Maia, I, Silva, K. R. G., Max, L., Camara, R.Melcher,
E. U. K. (2007). eTBc: A Semi-Automatic Testbench
Generation Tool. IPSOC (pp. 1-5) .

[4] O. Lachish, E. Marcus, S. Ur, and A. Ziv. Hole asd for
functional coverage data, 2002.

[5] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Zidser
defined coverage: a tool supported methodologgésign
verification”, DAC '98, pp. 158-163, New York, 1998

[6] Brazillp. www.brazilip.org.br/fenix. 2007.

[7] A.K.Rocha, P. Lira, Y. Y. Ju, E. Barros, E. Mechand G.
Araujo. “Silicon validated ip cores designed by brazil-ip
network”, IP/SOC 2006, June 2006.Bowman, M., Dep&y
K., and Peterson, L. L. 1993. Reasoning about ngmin
systemsACM Trans. Program. Lang. Syst. 15, 5 (Nov.
1993), 795-825.

