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ABSTRACT 

 
This paper presents a method to compute P-matching 

equivalence of read-once Boolean functions. In logic 

synthesis, the technology mapping process can be a very 

time consuming task when binding cells from a target 

library. Our approach transforms a Boolean function in a 

logical tree and constructs a code to sort this generated 

tree in an unambiguous order that match with other 

equivalent sorted tree. Since the method has a polynomial 

time complexity, it enables the algorithm to scale to 

hundreds of input variables in quite fast computation. The 

algorithm efficiency has been evaluated in comparison to 

related work. 

 

1. INTRODUCTION 

 

The standard cell flow plays a major role on IC digital 

design. This flow is divided into several steps. One of 

them is the technology mapping process, which receives a 

netlist, (e.g. a description about the connectivity of an 

electronic design representing a Boolean function), and 

matches covers candidates against cells from a library [1]. 

Since there are several cuts on netlist, many of them 

should be considered. Clearly, such task needs to be as 

fast as possible. 

The problem of determining when two Boolean 

functions are equivalent under permutation of variables is 

named P-matching [2]. Several methods have been 

proposed to solve it [3-4] [5], but they are not scalable for 

functions with more than 8 variables. On the other hand, 

the read-once (RO) class of functions [6], representing the 

majority of logic gates in a library [7], have singular 

properties that can be exploited to accelerate the matching 

process. A new algorithm of P-matching with this class of 

functions is proposed in this work and the library 

presented in [7] is taken into account to compare our 

approach against the current state-of-the-art matching 

algorithms. This comparison demonstrated that our 

approach is very fast, signing the entire library in few 

milliseconds. Additionally, it is also scalable, matching 

functions with up to 16 variables. 

The remainder of the paper is organized as follows. 

Section 2 presents basic concepts for a better 

understanding of the method. In Section 3, the process of 

coding and ordering a tree from read-once expression is 

presented. Section 4 calculates the complexity of the 

proposed algorithm, and Section 5 presents results in 

comparison to other approaches. The conclusions are 

outlined in section 6. 

 

2. PRELIMINARIES 

 

Boolean expressions are very useful form to represent 

logic functions. In this way, it is sometimes interesting to 

derive other expressions from the original one. This 

process is known as factorization [8-9]. It generates an 

expression that respects a factorization criterion, for like 

as, reduced literal count. 

 In this context, we can detach three concepts among 

Boolean functions and its expressions: 

 

P-equivalent expressions - Two logical expressions 

are P-equivalent if a permutation (P) operation over its 

literals can transform one expression in the other one, as 

depicted in Fig. 1. This type of equivalent search is 

named P-matching. 

 
Figure 1- Example of P-equivalent RO functions. 

 

Expression tree - Given a Boolean expression, a 

rooted tree can be generated directly from it. This rooted 

tree is an acyclic connected graph G (V, E), where V 

represents a set of nodes in graph and E represents a set 

of edges in graph demonstrating the hierarchical relation 

between root node and its children. Each node n in V 

belongs to the set {+, *, !, α}, where α represents a set of 

variables. Notice that the literals are in the leaves of the 

tree, as illustrated in Fig. 2. 

 
Figure 2- Expression tree example representing  

f= (a+!b)*(!c+d)+(!e+!f)*(g+h) with α ={a,b,c,d,e,f,g,h}. 
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Read-Once functions - Read-once (RO) Boolean 

functions are well known for a long time [8], but their 

special properties still play important role in modern 

circuit synthesis flow [6] [10]. 

A Boolean function is considered RO if it can be 

represented by a factored form where each variable 

appears only once [11]. 

 

 3. PROPOSED P-MATCHING 

 

The task of finding P-matching is very difficult in 

naïve approaches. Given two RO expressions, a naïve 

algorithm tries all the possibilities in the variable 

arrangement generating all permutations in the original 

expression. Denoting n as the number of variables in both 

expressions, this approach runs in O (n!) in the worst case 

time complexity. In the case of RO expressions, a 

canonical structure permits a fast way to decide when two 

RO expressions are equivalent. In the next sub-sections, 

we present a method to calculate RO P-matching that 

takes advantage of the canonical structure of RO 

expressions.  

3.1 Tree Codification 

Given a RO expression tree, it is possible codify all 

nodes present in the tree based on codification presented 

in [6]. In this work, the authors use a codification to 

verify when two logic tree implements the same logic 

function. Here, the codification is incremented to 

represent the relations needed to generate a RO P-

matching. 

The method starts by replacing all variables in the 

expression by ‘t’ and saving them into a list. 

Every leaf node receives a code {1}, as illustrated in 

Fig. 3. 

 
Figure 3- Leaf nodes codification. 

 

Notice that a child can be rooted by NOT, OR or 

AND nodes. A NOT node has as child only literal nodes. 

Therefore, these three cases must be treated to generate 

the code for root nodes. 

 

Definition 1: Given two vectors, v ={ v1, v2,,…, vn} with 

n components and u ={u1, u 2,…,u m} with m components, 

the step of vector ‘multiplication’ (π) is define as follows: 

π (v, u) = { v1 + u1, … , v1 + um ,v2 + u1, … , v2 + um ,... vn 

+ u1, … , vn + um } 

(1) 

Definition 2: Given two vectors, v ={v1, v2,,…,v n} with n 

components and u ={u1, u 2,…,u m} with m components, 

the vector ‘concatenation’ (µ) is define as follows: 

µ (v, u) = { v1, v2 , … ,vn , u1, u2 , … ,um}  

(2) 

Definition 3: Given an AND root node with {k1, k2,..., km} 

children, the code associated to this node is π (c1, 

c2,...,cm), where ci is the code for ki child, being 0 ≤ i ≤ m, 

viewed as a vector. 

Ex: π ({1, 1, 1}, {0, 1}) 

= {1+0, 1+1, 1+0, 1+1, 1+0, 1+1} 

= {1, 2, 1, 2, 1, 2} 

(3) 

Definition 4: Given an OR root node with {k1, k2,..., km} 

children, the code associated to this node is µ(c1, 

c2,...,cm), where ci is the code for ki child, being 0 ≤ i ≤ m, 

viewed as a vector. 

Ex: µ ({1, 1, 1}, {0, 1}) 

= {1, 1, 1, 0, 1} 

(4) 

Definition 5: Given a NOT root node, the code associated 

to this node is a separated code constructed from leaves. 

Initially, the code has the value {0}. If a NOT root node is 

found, the value of this code changes to {1}. After this 

initial step, the codification follows identical to the cases 

defined above. An example of NOT codification is presented 

in Fig. 4. 

  
 Figure 4- Codification of NOT node. 

 

Using the definitions above, a sequence of these 

operations generates the codification for a given tree. Fig. 

5 shows an example of complete tree codification. 

  
  Figure 5- Codified tree. 



 

3.2 Tree Normalization 

The process of normalizing the expression tree uses 

the codes generated as described in sub-section 3.1. 

Notice that the idea is to reorder the nodes such that the 

nodes that are more dense stay in the left side of the tree. 

For this, a decreasing relation is defined for each code 

viewed as vector. 

 

Definition 6: Given two vectors, v ={v1, v2,,…,v n} 

with n components and u ={u1, u 2,…,u m} with m 

components: 

 v = u, if and only if, n=m and vi is equals to 

ui for (0 < i < n); 

 v > u, if and only if, n > m or n=m, and some 

vi is larger than ui for (0 < i < n; 

 v < u, if and only if, n < m or n=m, and some 

vi is smaller than ui for (0 < i < n). 

Each node in the tree has two codes associated, as 

presented in Fig. 4. 

The node code is put in a pair (c1, c2). Therefore, in 

the node with n children, all n pairs are sorted in first 

component and, if exists tie, the second component is 

considered. 

If we sort the tree such that larger vectors are present 

in leftmost side and smaller vectors are present in 

rightmost side, a normalized tree is generated as depicted 

Fig.6. 

 
  Figure 6- Normalized tree. 

 

3.3 Normalized Logical Expression 

Given a normalized expression tree, the inorder 

traversal sequence returns normalized expression with ‘t’ 

instead of the name of original variable. Therefore, it can 

be used as the signature to match this expression with to 

others generated with the same algorithm. If two trees are 

equivalent, then their signature resulting of tree traversal 

are the same. We use these signatures for P-matching. In 

case of matching, in order to recuperate the original 

information for each variable replaced by ‘t’, it is enough 

to access the list of variable set saved in the first step of 

this algorithm and performs the new replacement in ‘t’ 

values. Such two equivalent expressions have the same 

structure, and the matching mapping in variables is the 

variables placed in the same position in both signatures. 

 

 

4. ALGORITHM COMPLEXITY AND 

SCALABILITY ANALYSIS 

 

The time complexity of our approach is calculated as 

follow. Let l be the number of literals in tree, and let m be 

the number of operators in tree. The size s of tree is l + m 

nodes. Every RO expression is normal, i.e., every code 

does not exceed k, where k is the number of cubes in the 

original expression in sum-of-products (SOP) form [6]. 

The worst cases in codifications is the π operation 

running in O(k
2
) and the µ operation running in 

O(k).Therefore, the time complexity for codification is 

O(k
2
+ k) = O(k

2
). In the worst case, we can have s codes 

with k length. Hence, this runs in O(k
2
 x s) time 

complexity. The ordering process is done together with 

the codification, since our algorithm begins the code 

construction in leaves, any root Ri is achieved when its 

children have been visited. Hence, its children can be 

ordered in O(l log (l)) time complexity. The inorder 

traversal to construct signature runs in O(s), and being a 

separated step in the algorithm. Consequently, the 

proposed algorithm runs in O(k
2
 x s). 

 

5. EXPERIMENTAL RESULTS 

 

We compared our algorithm for P-matching of RO 

expressions with related work [3] [4], running over the 

genlib set of functions [7]. This library has 3503 RO 

functions. 

The results presented in Table 1 show the best and the 

worst cases running over the genlib functions with up 7 

variables.  

 

Table 1- Time for genlib up to 7 variables.[7]  

 Proposed 

RO-matching 

Heinsberger[1] Sasao[2] 

Higher time 10 ms 312 ms  1123 ms 

Lower time < 1ms < 1 ms < 1 ms 

 

The proposed RO-matching run over all genlib 

functions and generates the signature for each function in 

a total time of 1220 ms. The largest time observed was 20 

ms for a function with 16 variables. Other evaluated 

approaches are not scalable for functions with more than 

8 variables [3][4]. 

 

Table 2- Comparison of larger running time with more 

than 7 variables  
Variables Proposed RO-matching Heinsberger[1] 

7  10 ms 40 ms 

8 16 ms  141ms 

9 16 ms  312 ms 

10 16 ms  1357 ms 

11 20 ms 10371 ms 

 

The table 2 presents the time in milliseconds for 

functions from genlib with 7, 8, 9, 10 and 11 variables. 

Notice that Sasao’s approach [4] does not scale to 

functions with more than 8 variables, that is the reason for 



its column is be presented empty in Table 2. Our 

implementation of Heinsberger’s approach [3] exceeds 

more than 100 ms when number of variables exceeds 7 

variables. The results show that RO-matching is scalable 

for more than 7 variables in comparison to existing 

approaches. 

 

6. CONCLUSION 

 

This paper proposed a polynomial algorithm to decide 

if two RO expressions are equivalent in permutation, 

providing also a canonical signature. The proposed 

method receives two RO expressions and normalizes 

them based on their tree representations. An algorithm 

with complexity of order O(k
2
 x s) is provided. 
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