
P-MATCHING FOR READ-ONCE FUNCTIONS

1
Anderson Santos da Silva,

2
Vinicius Callegaro,

1,2
Renato P. Ribas,

1,2
André I. Reis

 1
Institute of Informatics /

2
PPGC - UFRGS, Porto Alegre, Brazil

{assilva, vcallegaro, rpribas, andreis}@inf.ufrgs.br

ABSTRACT

This paper presents a method to compute P-matching

equivalence of read-once Boolean functions. In logic

synthesis, the technology mapping process can be a very

time consuming task when binding cells from a target

library. Our approach transforms a Boolean function in a

logical tree and constructs a code to sort this generated

tree in an unambiguous order that match with other

equivalent sorted tree. Since the method has a polynomial

time complexity, it enables the algorithm to scale to

hundreds of input variables in quite fast computation. The

algorithm efficiency has been evaluated in comparison to

related work.

1. INTRODUCTION

The standard cell flow plays a major role on IC digital

design. This flow is divided into several steps. One of

them is the technology mapping process, which receives a

netlist, (e.g. a description about the connectivity of an

electronic design representing a Boolean function), and

matches covers candidates against cells from a library [1].

Since there are several cuts on netlist, many of them

should be considered. Clearly, such task needs to be as

fast as possible.

The problem of determining when two Boolean

functions are equivalent under permutation of variables is

named P-matching [2]. Several methods have been

proposed to solve it [3-4] [5], but they are not scalable for

functions with more than 8 variables. On the other hand,

the read-once (RO) class of functions [6], representing the

majority of logic gates in a library [7], have singular

properties that can be exploited to accelerate the matching

process. A new algorithm of P-matching with this class of

functions is proposed in this work and the library

presented in [7] is taken into account to compare our

approach against the current state-of-the-art matching

algorithms. This comparison demonstrated that our

approach is very fast, signing the entire library in few

milliseconds. Additionally, it is also scalable, matching

functions with up to 16 variables.

The remainder of the paper is organized as follows.

Section 2 presents basic concepts for a better

understanding of the method. In Section 3, the process of

coding and ordering a tree from read-once expression is

presented. Section 4 calculates the complexity of the

proposed algorithm, and Section 5 presents results in

comparison to other approaches. The conclusions are

outlined in section 6.

2. PRELIMINARIES

Boolean expressions are very useful form to represent

logic functions. In this way, it is sometimes interesting to

derive other expressions from the original one. This

process is known as factorization [8-9]. It generates an

expression that respects a factorization criterion, for like

as, reduced literal count.

 In this context, we can detach three concepts among

Boolean functions and its expressions:

P-equivalent expressions - Two logical expressions

are P-equivalent if a permutation (P) operation over its

literals can transform one expression in the other one, as

depicted in Fig. 1. This type of equivalent search is

named P-matching.

Figure 1- Example of P-equivalent RO functions.

Expression tree - Given a Boolean expression, a

rooted tree can be generated directly from it. This rooted

tree is an acyclic connected graph G (V, E), where V

represents a set of nodes in graph and E represents a set

of edges in graph demonstrating the hierarchical relation

between root node and its children. Each node n in V

belongs to the set {+, *, !, α}, where α represents a set of

variables. Notice that the literals are in the leaves of the

tree, as illustrated in Fig. 2.

Figure 2- Expression tree example representing

f= (a+!b)*(!c+d)+(!e+!f)*(g+h) with α ={a,b,c,d,e,f,g,h}.

alex
Text Box
SForum 2012 - Student Forum on MicroelectronicsThis work has been developed by the first author(s) in the scope of the undergraduate studies

Read-Once functions - Read-once (RO) Boolean

functions are well known for a long time [8], but their

special properties still play important role in modern

circuit synthesis flow [6] [10].

A Boolean function is considered RO if it can be

represented by a factored form where each variable

appears only once [11].

 3. PROPOSED P-MATCHING

The task of finding P-matching is very difficult in

naïve approaches. Given two RO expressions, a naïve

algorithm tries all the possibilities in the variable

arrangement generating all permutations in the original

expression. Denoting n as the number of variables in both

expressions, this approach runs in O (n!) in the worst case

time complexity. In the case of RO expressions, a

canonical structure permits a fast way to decide when two

RO expressions are equivalent. In the next sub-sections,

we present a method to calculate RO P-matching that

takes advantage of the canonical structure of RO

expressions.

3.1 Tree Codification

Given a RO expression tree, it is possible codify all

nodes present in the tree based on codification presented

in [6]. In this work, the authors use a codification to

verify when two logic tree implements the same logic

function. Here, the codification is incremented to

represent the relations needed to generate a RO P-

matching.

The method starts by replacing all variables in the

expression by ‘t’ and saving them into a list.

Every leaf node receives a code {1}, as illustrated in

Fig. 3.

Figure 3- Leaf nodes codification.

Notice that a child can be rooted by NOT, OR or

AND nodes. A NOT node has as child only literal nodes.

Therefore, these three cases must be treated to generate

the code for root nodes.

Definition 1: Given two vectors, v ={ v1, v2,,…, vn} with

n components and u ={u1, u 2,…,u m} with m components,

the step of vector ‘multiplication’ (π) is define as follows:

π (v, u) = { v1 + u1, … , v1 + um ,v2 + u1, … , v2 + um ,... vn

+ u1, … , vn + um }

(1)

Definition 2: Given two vectors, v ={v1, v2,,…,v n} with n

components and u ={u1, u 2,…,u m} with m components,

the vector ‘concatenation’ (µ) is define as follows:

µ (v, u) = { v1, v2 , … ,vn , u1, u2 , … ,um}

(2)

Definition 3: Given an AND root node with {k1, k2,..., km}

children, the code associated to this node is π (c1,

c2,...,cm), where ci is the code for ki child, being 0 ≤ i ≤ m,

viewed as a vector.

Ex: π ({1, 1, 1}, {0, 1})

= {1+0, 1+1, 1+0, 1+1, 1+0, 1+1}

= {1, 2, 1, 2, 1, 2}

(3)

Definition 4: Given an OR root node with {k1, k2,..., km}

children, the code associated to this node is µ(c1,

c2,...,cm), where ci is the code for ki child, being 0 ≤ i ≤ m,

viewed as a vector.

Ex: µ ({1, 1, 1}, {0, 1})

= {1, 1, 1, 0, 1}

(4)

Definition 5: Given a NOT root node, the code associated

to this node is a separated code constructed from leaves.

Initially, the code has the value {0}. If a NOT root node is

found, the value of this code changes to {1}. After this

initial step, the codification follows identical to the cases

defined above. An example of NOT codification is presented

in Fig. 4.

 Figure 4- Codification of NOT node.

Using the definitions above, a sequence of these

operations generates the codification for a given tree. Fig.

5 shows an example of complete tree codification.

 Figure 5- Codified tree.

3.2 Tree Normalization

The process of normalizing the expression tree uses

the codes generated as described in sub-section 3.1.

Notice that the idea is to reorder the nodes such that the

nodes that are more dense stay in the left side of the tree.

For this, a decreasing relation is defined for each code

viewed as vector.

Definition 6: Given two vectors, v ={v1, v2,,…,v n}

with n components and u ={u1, u 2,…,u m} with m

components:

 v = u, if and only if, n=m and vi is equals to

ui for (0 < i < n);

 v > u, if and only if, n > m or n=m, and some

vi is larger than ui for (0 < i < n;

 v < u, if and only if, n < m or n=m, and some

vi is smaller than ui for (0 < i < n).

Each node in the tree has two codes associated, as

presented in Fig. 4.

The node code is put in a pair (c1, c2). Therefore, in

the node with n children, all n pairs are sorted in first

component and, if exists tie, the second component is

considered.

If we sort the tree such that larger vectors are present

in leftmost side and smaller vectors are present in

rightmost side, a normalized tree is generated as depicted

Fig.6.

 Figure 6- Normalized tree.

3.3 Normalized Logical Expression

Given a normalized expression tree, the inorder

traversal sequence returns normalized expression with ‘t’

instead of the name of original variable. Therefore, it can

be used as the signature to match this expression with to

others generated with the same algorithm. If two trees are

equivalent, then their signature resulting of tree traversal

are the same. We use these signatures for P-matching. In

case of matching, in order to recuperate the original

information for each variable replaced by ‘t’, it is enough

to access the list of variable set saved in the first step of

this algorithm and performs the new replacement in ‘t’

values. Such two equivalent expressions have the same

structure, and the matching mapping in variables is the

variables placed in the same position in both signatures.

4. ALGORITHM COMPLEXITY AND

SCALABILITY ANALYSIS

The time complexity of our approach is calculated as

follow. Let l be the number of literals in tree, and let m be

the number of operators in tree. The size s of tree is l + m

nodes. Every RO expression is normal, i.e., every code

does not exceed k, where k is the number of cubes in the

original expression in sum-of-products (SOP) form [6].

The worst cases in codifications is the π operation

running in O(k
2
) and the µ operation running in

O(k).Therefore, the time complexity for codification is

O(k
2
+ k) = O(k

2
). In the worst case, we can have s codes

with k length. Hence, this runs in O(k
2
 x s) time

complexity. The ordering process is done together with

the codification, since our algorithm begins the code

construction in leaves, any root Ri is achieved when its

children have been visited. Hence, its children can be

ordered in O(l log (l)) time complexity. The inorder

traversal to construct signature runs in O(s), and being a

separated step in the algorithm. Consequently, the

proposed algorithm runs in O(k
2
 x s).

5. EXPERIMENTAL RESULTS

We compared our algorithm for P-matching of RO

expressions with related work [3] [4], running over the

genlib set of functions [7]. This library has 3503 RO

functions.

The results presented in Table 1 show the best and the

worst cases running over the genlib functions with up 7

variables.

Table 1- Time for genlib up to 7 variables.[7]

 Proposed

RO-matching

Heinsberger[1] Sasao[2]

Higher time 10 ms 312 ms 1123 ms

Lower time < 1ms < 1 ms < 1 ms

The proposed RO-matching run over all genlib

functions and generates the signature for each function in

a total time of 1220 ms. The largest time observed was 20

ms for a function with 16 variables. Other evaluated

approaches are not scalable for functions with more than

8 variables [3][4].

Table 2- Comparison of larger running time with more

than 7 variables
Variables Proposed RO-matching Heinsberger[1]

7 10 ms 40 ms

8 16 ms 141ms

9 16 ms 312 ms

10 16 ms 1357 ms

11 20 ms 10371 ms

The table 2 presents the time in milliseconds for

functions from genlib with 7, 8, 9, 10 and 11 variables.

Notice that Sasao’s approach [4] does not scale to

functions with more than 8 variables, that is the reason for

its column is be presented empty in Table 2. Our

implementation of Heinsberger’s approach [3] exceeds

more than 100 ms when number of variables exceeds 7

variables. The results show that RO-matching is scalable

for more than 7 variables in comparison to existing

approaches.

6. CONCLUSION

This paper proposed a polynomial algorithm to decide

if two RO expressions are equivalent in permutation,

providing also a canonical signature. The proposed

method receives two RO expressions and normalizes

them based on their tree representations. An algorithm

with complexity of order O(k
2
 x s) is provided.

ACKNOWLEDGEMENTS

Research partially funded by Nangate Inc. under a

Nangate/UFRGS research agreement, by CAPES and

CNPq Brazilian funding agencies, by FAPERGS under

grant 11/2053-9 (Pronem), and by the European

Community's Seventh Framework Programme under grant

248538 – Synaptic.

 REFERENCES

[1] A . Mishchenko; S. Chatterjee; R. Brayton; W. Wang and T.

Kam. “Technology Mapping with Boolean Matching,

Supergates and Choices,” ERL Technical Report, EECS Dept.,

UC Berkeley, Mar 2005.

[2] T. Sasao and J. T Butler, “Progress in Applications of

Boolean Functions,” Synthesis Lectures on Digital Circuits and

Systems, vol. 4, no. 1, 2009, pp. 1-153.

[3] U. Hinsberger and R. Kolla, “Boolean matching for large

libraries,” In Proc. Design Automation Conference (DAC), Jun.

1998, pp. 206–211.

[4] D. Debnath and T. Sasao, “Efficient computation of

canonical form for Boolean matching in large libraries,” In

Proc. Asia and South Pacific Design Automation Conference

(ASP-DAC), 2004, pp. 591-596.

[5] H. Katebi and Igor L. Markov,“Large-scale Boolean

matching,” In Proc. Conference on Design, Automation and

Test in Europe (DATE), 2010, pp. 771-776.

[6] M. C. Golumbic, A. Mintz and U. Rotics, “Factoring and

recognition of read-once functions using cographs and

normality,” In Proc. Design Automation Conference (DAC),

2001, pp.109-14.

[7] E. Sentovich; K. Singh, L. Lavagno; C. Moon; R. Murgai;

A. Saldanha, H. Savoj; P. Stephan; R. Brayton; and A.

Sangiovanni-Vincentelli. “SIS:A system for sequential circuit

synthesis," Tech. Rep.UCB/ERL M92/41. UC Berkeley,

Berkeley, 1992.

[8] A. Mintz and M. C. Golumbic, “Factoring Boolean

functions using graph partitioning,” Discrete Applied

Mathematics, vol. 149, no. 1–3, 2005, pp.131-53.

[9] R. K. Brayton. “Factoring logic functions,” IBM J. Res. Dev.

vol 31, nº 2, Mar. 1987, pp 187-198.

[10] M. C. Golumbic, A. Mintz and U. Rotics, “An

improvement on the complexity of factoring read-once Boolean

functions,” Discrete Applied Mathematics, vol. 156, no. 10,

May 2008, pp.1633-36.

[11] J. P. Hayes, “The fanout structure of switching functions,”

J. ACM, vol. 22, no. 4, Oct. 1975, pp.551-71.

