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ABSTRACT

The goal of this work is to compare two architectures of
single-electron neural networks performing a pattern recog-
nition task. Comparison was made regarding 6 very impor-
tant characteristics of circuits: power dissipation, occupied
area, bandwidth, response delay, stability plot and robust-
ness to noise. All the simulations were made at room tem-
perature (300 K) and at 0 K. Power dissipation and occupied
area were calculated by well known mathematical formulas,
bandwidth and response delay were estimated using SECS
(Single-Electron Circuit Simulator) and stability plot and
robustness to noise were achieved by using SIMON (Simula-
tion of Nano-structures). The Hamming network presented
the best performance. Nevertheless, the Hopfield network
can be advantageous in some particular aspects.
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1. INTRODUCTION

The electronic industry finds itself at the verge of a revolu-
tion: economic pressure requires faster and smaller devices
capable of high processing speed and low power consump-
tion. These requirements have been, until now, met by the
MOSFET (Metal Oxide Semiconductor Field Effect Transis-
tor). The drawback of this device are its dimensions: they
are still micrometric. As scientists advance in the search for
more efficient devices, something becomes clear: nanoelec-
tronics is the next logical step in the progress of electronic
industry [8][10]. In this context, several new devices have
been proposed, such as resonant tunneling diodes (RTD),
quantum dots (QD) and single-electron tunneling transis-
tors (SET) [8]. A SET is capable of confining electrons to
very small dimensions so that the quantization of its charge
and its energy are easily observed [11]. In this way, SETs
are essentially quantum devices. There are many propos-
als of new circuits implemented in SET technology. Among
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these circuits some neural networks architectures have been
proposed [3, 6, 7].

Artificial neural networks can be implemented by electronic
circuits that are capable of performing activities of high com-
plexity [2]. Taking that into account two architectures of
nanoelectronic neural nertworks based on SETs were chosen
for a performance comparison in a pattern recognition task:
Hamming network [3] and Hopfield network [6], both were
proposed in former works. The performance of these circuits
was simulated using two softwares: SIMON [11] and SECS
[12]. The main difference between these two simulators is
the fact that SECS allows frequency simulations by intro-
ducing a time scale into simulation. This time scale is based
on the occurrence of a tunneling event, i.e., the time scale
is increased every time a tunneling event occurs. Although
both simulators use the Monte Carlo method to incorporate
the stochastic nature of tunneling events, there are some
differences in the simulation process beyond the time scale
[12]. One of these differences is of great significance in this
work: the fact that SECS does not include the occurrence of
rare events in its simulation. So, one might say that there is
an inherent comparison here: the comparison between two
nanoelectronic circuits simulators.

2. CIRCUITS AND SIMULATIONS

In order to make a fair comparison, the same patterns (shown
in the first column of table 1) were presented as inputs to
both networks. To do that, each pattern was converted into
a vector with 9 elements (3 for each line of the image). For
example let’s take the first pattern presented in the second
column of table 1: the first line is represented by the vector
(1, 0, 1), the second by (0, 1, 0) and the third by (1, 0, 1).
The result is the vector (1, 0, 1, 0, 1, 0, 1, 0, 1), where 1
stands for a black square and O for a white one [3]. In the
second column of table 1 the three patterns used to train the
networks are presented as desired outputs corresponding to
each input. To train these patterns, Hopfield network needs
9 inputs and 9 outputs. This happens because Hoplfield
network has one output for each little square that composes
the pattern. Hamming network needs 9 inputs and only
3 outputs, due to its Winner-Take-All (WTA) layer, wich
associates each pattern to only one output [3].

The artificial neural networks used in this work were de-
signed according to the methods developed by Guimaraes et
al. [3] and by Peixoto et al. [7]. The resulting circuits are
shown in figures 1 and 2.
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Figure 1: Hopfield network (modified [7]).
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Figure 2: Hamming network designed in SIMON.

Table 1: Patterns presented to the networks
Presented pattern - in | Expected pattern - out

Il ™=~

The estimations of occupied area were calculated using the
following data: each 5uF capacitance occupies lem? [5][1]
and a tunnel junction area is of 70 fF/um? [9]. The power
dissipation estimation is divided into two parts: static power
(Pste) and dynamic power (Py) [4].

Pstc = Vpp-ligg, 1)

Pi=CL-Vip-f, (2)

where, Vpp is bias voltage, I;x4 is the leakage current mea-
sured in the output of the transistors of the input layer
(Hamming network) or in the output of the tunnel junctions
(Hopfield network), C, is the total capacitance connected to
the output node and f is the operating frequency. Here, f
is equal to 1 GHz.

In order for estimating bandwidth and response delay the
circuits were simulated in SECS. The bandwidth was ob-
tained by simply increasing the operating frequency of the
circuit up to the maximum point where the correct outputs
are still provided by the network. The response delay were
calculated as the difference between the time when the in-
put signal reaches 50% of its final value and the time when
the latest output reaches 50% of its final value. Because the
circuits have more than one output (Hamming network has
3 outputs and Hopfield has 9), the latest output was chosen,
so the worst case could be simulated.

Stability plot and robustness to noise were simulated using
SIMON. In order to evaluate the stability of both networks
at room temperature, their stability plot was obtained. At
each point of the stability plot, the free energy of the circuits
is calculated based on the variation of the input voltages ap-
plied to the circuit. The higher the free energy of the circuit,
the greater the probability of occurring charge oscilations.
In this way the stability plot displays regions where stable
and unstable points can be identified by the change of color:
stable points are colored white whereas unstable points are
colored black. The rest of the points are colored grey - the
darker the region, the more unstable it is. For Hopfield net-
work the operation point is determined by the value of the
source connected to its inputs, Vi,, and by the value of the
source connected to its outputs Vou: (shown in figure 1 as Vj,
and V,, respectively). In this case, since there is only one
value of V, = Vour = V5, = Vi, the point of operation will
be (Vin, Vin) = (—=70V, =70V), the reason for this sources to
be equal can be seen in [7]. For Hamming network, as shown
in figure 2, there are two values for the source connected to
the input layer, V;,: 1,6 V and -1,6 V, for levels 1 and 0.
There is also another source called Vp;qs that is connected
to each SET of the WTA layer [3]. In this way, Hamming
network needs two stability plots: Vi, versus Vin and Vpias
versus Vin, the first one will result an area and the second
one a line.

Robustness to noise were obtained by introducing random
charges in the circuits. These random charges are multiples
of the elementary charge e. The amount of random charges
were increased until the circuit’s operation were uncharac-



teristic.

3. RESULTS

Table 2 shows the occupied area for each network at room
temperature and at 0 K.

Table 2: Total area occupied by Hopfield and Ham-
ming networks at 0 and at 300 K.

Network | Total area at 0 K | Total area at 300 K
Hopfield 286,1286 pm? 2,989 nm?
Hamming 6,51 pum? 71,769 nm?

It can be seen that Hamming network occupies a smaller
area at 0 K, the reason for that is the fact that Hamming
network has fewer capacitors and tunnel junctions than Hop-
field network. Hopfield network has better results concern-
ing occupied area at 300 K, as for operating in higher tem-
peratures the capacitances should be smaller. In Hopfield
network, this reduction is about two orders of magnitude
greater than in Hamming network and a smaller capacitance
occupies less area.

Table 3 shows the results obtained for power dissipation for

Hopfield network and table 4 for Hamming network.

Table 3: Power dissipated by Hopfield network at 0
and at 300 K

Power 0K 300 K
Static 0 W | 10,0937466 fW
Dynamic - -
Total (Psic + Pa) | 0 W | 10,0937466 fW

Table 4: Power dissipated by Hamming network at
0 and at 300 K

only the static power. In this case, at 300 K, Hamming net-
work dissipates a power 1,692.9 times greater than Hopfield
network.

The bandwidth and the delay response simulations were per-
formed only in the Hamming network, since the behavior of
Hopfield network was not validated in SECS. For the first
simulation is was observed that Hamming network can op-
erate in frequencies up to 15 GHz, depending on the time
delay that the application can tolerate (for higher frequen-
cies the response delay is greater). Table 5 shows the results
obtain for Hamming network at room temperature.

Table 5: Response delay for Hamming network at
300 K.

Frequency | Period (T') | Delay (ta) | % of T
1 GHz 1ns 62,8 ps 6,28 %
2 GHz 0,5 ns 50,11 ps | 10,02 %
5 GHz 0,2 ns 42,22 ps | 21,11 %
10 Gz 0,175 13,74 ps | 13,74 %
15 GHz 0,067 ns 17,92 ps | 26,88 %

Power Hamming (0 K) | Hamming (300 K)
Static 0w 17,088 pW
Dynamic 768 nW 3,072 uW
Total (Psic + Pa) 768 nW 3,072 pW

Unfortunately, Hopfield network could not be simulated in
SECS and the reason for that is quite simple: SECS does
not include rare events in its simulation process. This means
that there are no simulation of cotunneling events and, as
can be seen in [6], cotunneling events are essencial to quan-
tum Hopfield network operation. Because of that, the com-
parison regarding bandwidth and response delay could not
be made and the power dissipation of Hopfield network is
represented only by the static value, since the dynamic value
depends directly on the frequency. The comparison regard-
ing power dissipation can be made taking into consideration

A stability plot will show the operation point of the circuit:
if it stays in a white area, the operation is stable. Figure 3
shows the results for the networks at each operation point.
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Figure 3: All plots at 300 K. a) Hopfield stability
plot. b) Hamming stability plot - Vi, versus Vi,. c)
Hamming stability plot - V.5 versus V;,.

The robustness to noise for each network is presented next.
To obtain the results shown in table 6, the third pattern
of the second column of table 1 was presented to the net-
work. It can be noted that Hopfield network does not tol-
erate noise. That was already expected, since this network
needs to know accurately the amount of charge of each node



to operate correctly. In other works, it needs to know if the
electron is or is not in the node.

Table 6: Robustness to noise of 0,1-¢ - Hopfield net-
work at 300 K.

Neuron | Expected Charge [C] | Obtained Charge [C]

1 e 0.00625 - e
2 e 0.00625 - e
3 e 0.005 - e

4 e 0.003125 - e
5 0 0.004375 - e
6 e 0.00375 - e
7 e 0.00125 - e
8 e 0.00625 - e
9 e 0.00625 - e

The result for Hamming network was much better: it can
operate whith noise up to 45% of e.
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Figure 4: Hamming network at 300 K: well charac-
terized operation with noise of 45% of e.

ul4 ul 4 ul
01101401

L_ =

0.0 e Ge09s

Figure 5: Hamming network at 300 K: loss of fun-
cionality with noise of 46% of e.

4. CONCLUSIONS

The goal of this work was to compare two architectures of
nanoelectronics neural networks (Hamming and Hopfield).
Both of the circuits have already been validated in SIMON.
Thus, one of the challenges was to validate the networks
behavior in the new single-electron circuit simulator SECS.
As was shown, Hopfield network could not be simulated in
SECS. Regarding the comparison parameters, Hopfield net-
work was better concerning occupied area at room temper-
ature, static power dissipation and stability plot. With re-
spect to more qualitative aspects, Hamming network is eas-
ier to work with. The desingning is simpler and the circuit
is smaller.
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