
FPGA-based Heterogeneous Architecture
for Sequence Alignment

Xin Chang Fernando A. Escobar Carlos Valderrama
Service d’électronique et de Microélectronique

Faculté Polytechnique de Mons
Université de Mons,7000, Belgium

ABSTRACT
With the rapid development of genome sequencing technol-
ogy, the cost of getting genome data is becoming decreas-
ingly insignificant. However, the computational speed for
analysis genome data remains same. The bioinformatics
community is facing a serious challenge to deal with massive
data. In this paper, we proposed a novel heterogeneous ar-
chitecture for sequence alignment. As will be demonstrated,
the speed of sequence alignment can be improved with rea-
sonable resources utilization on programmable logic.

Keywords
Sequence Alignment,Smith-Waterman,Heterogeneous Archi-
tecture,FPGA,Systolic Array;

1. INTRODUCTION
Nowadays bioinformatics plays an essential role in process-

ing genomic, medical and proteomic data generated by high-
throughput technologies. Genome sequencing is, in particu-
lar, an emerging technique widely used. With the develop-
ment or the novel technologies such as PCR[1] sequencing,
the cost and time of genome sequencing have dropped dra-
matically over the last decade.

Sequence alignment analyzes similarities between DNA, or
protein sequences, to assess the genetic relationship between
organisms or species. It helps scientists to check pathogenic
mutations, understand the evolution of creatures and pre-
dict the structure of organisms. It is widely used in the
bioinformatics, drugs and medicine design among other re-
lated areas. However, the rate of genome data generation
exceeds the speed at which it can be computationally pro-
cessed. In addition, the databases of genome sequences are
spreading and becoming large-scale. These are reasons why
the acceleration of genome sequence alignment has become
an emerging bioinformatics activity.

This paper is going to propose a novel FPGA-based het-
erogeneous architecture for sequences alignment. As will be
demonstrated, the proposed architecture outperforms state-
of-art approaches in terms of speed thanks to an optimized
hardware and software partition. In the next section, cur-
rent solutions for sequence alignment and background of
Smith-Waterman algorithm will be introduced. Section III
will analyse our optimization target, the Smith-Waterman
algorithm, highlighting the bottlenecks of Smith-Waterman
algorithm and optimization strategies. Section IV will de-
fine the proposed implementation architecture. Preliminary
evaluation results will be shown in Section V. The last sec-

tion will conclude and present the future works.

2. BACKGROUND
A broad set of genome sequence alignment algorithms are

available. They can be classified according to the number
of sequences that will be processed simultaneously in pair-
wise and in multiple sequence alignment. Probcons[2], T-
Coffee[3] are known as the most commonly used algorithms
for multiple sequence alignment. Nevertheless, most of mul-
tiple sequence approaches are based on an extended version
of pairwise sequence alignment algorithms. Regarding pair-
wise sequence alignment algorithms, the Smith-Waterman,
BLAST[4] and HMMER[5] are the most representative of
this category. Due to its accuracy, The Smith-Waterman al-
gorithm is one of the most widely used sequence alignment
algorithm. Indeed, it is even used to refine the results of
other less accurate. However, because it is also a computa-
tionally intensive algorithm; it requires more time compared
to others. These are the reasons why we are particularly in-
terested in the Smith-Waterman algorithm.

There exist several implementation architectures, from
classic multi-cores to Special Application Specific Integrated
Circuits (ASICs) [6], proposed to effectively accelerate the
Smith-Waterman algorithm. The ASIC is able to provide a
significantly low cost and low power consumption, but with
limited scalability and not negligible design and fabrication
times. As alternative, recent approaches focus on Graphic
Processing Units (GPUs) [7] and Field Programmable Gate
Array (FPGA) [8][9]. GPU-based solutions provide mas-
sive multi-threading for parallelize the Smith-Waterman al-
gorithm. However, conflicting memory accesses, therefore
sequential, become the bottleneck of the overall system. In
2012, K. Bankrid et al. explored the pros and cons of us-
ing FPGAs in bioinformatics [10]. Their results revealed
that, compared to other platforms, FPGAs are generally a
cost effective and energy efficient solution as it comes on
top of both, performance criteria per dollar and per Watt.
There are already some researches using FPGA-based plat-
forms to accelerate the Smith-Waterman such as in [8], [9],
and [11]. In [8] and [11], the whole Smith-Waterman algo-
rithm (including trace-back) was implemented on an FPGA
platform. However, parts of the algorithm spent a large
amount of FPGA resources without a clear performance im-
provement. Moreover, in these designs, due to the sequential
nature of certain tasks, such as the trace-back, the FPGA
is not able to achieve the best performance of its inherent
parallelism.

In [9], the authors propose a heterogeneous FPGA-based



solution providing hardware acceleration to the algorithm
running on a PC. However, the communication between the
FPGA and the PC (through a bus, PCIe or USB) needs
an additional time, which reduces the overall performance.
However, thanks to the recent technological evolution, it is
possible to have processor and FPGA together on the same
chip. It combines the software programmability of a proces-
sor (also called Processing System) with the hardware pro-
grammability of an FPGA (also called Programmable Logic),
resulting in unrivalled levels of system performance, flexibil-
ity and scalability, while providing system benefits in terms
of power reduction, lower cost and fast time to market. It
also greatly improves the communication efficiency between
the FPGA and the host reducing the loss of time during
data transfer.

In this paper, we propose a heterogeneous architecture
for sequence alignment based on the Smith-Waterman algo-
rithm. Our effort was oriented to optimize the original algo-
rithm in several directions, size and number or processing
resources, memory management, power consumption and
processing speed.

3. THE SMITH-WATERMAN ALGORITHM
In the pairwise sequence alignment, two sequences, Query

and Reference on Figure 1(a), are used to build a score ma-
trix (Figure 1(b)) based on the following equation 1:

Hi,j = max


0

Hi−1,j−1 + w(match/mismatch),
Hi,j−1 − d
Hi−1,j − d

(1)

Hi,j indicates the value at the cell position (i,j ), w stands
for the match/mismatch score, and d means the penalty for
the gap. For instance, the value of w is 2 if two nucleotides
are equal (match) and d is 1 if a gap (mismatch) occurs.
According to the Smith-Waterman algorithm, the first col-
umn and row of the score matrix are filled with zeros, and
other cells in the matrix are computed by the equation 1.

After computing the score matrix, tracing back starting
from the highest value in the score matrix to the origin point,
the gap or mutation will be exposed and the alignment result
will come out. There might be several paths back to the
origin; an alternative path appears whenever we find two
directions with the same score (paths green and yellow on
Figure 1(c)).

The generation of results indicates for each trace-back
path an outgoing pair (Q,R) of aligned sequences (Figure

1(d)). A mutation or gap, indicated by âĂŸ-âĂŹ, appears
on the sequence any time the trace-back is not following the
right-to-left diagonal; it happens on the Q when the trace-
back is going up and on R when going to the left (Best
alignment pair on Figure 1(d)).

Figure 2 shows the execution times of the different parts
of the algorithm when aligning two sequences with 200 nu-
cleotides each. Among the steps performed by the algo-
rithm, the most time consuming operation is the matrix
calculation. Furthermore, by looking at the FPGA-based
implementation, the Back-tracking and Reverse sequences
operations implied a large amount of resources and execu-
tion time due to sequential memory accesses [8][11].

We evaluated the performance of the Smith-Waterman
algorithm in a dual-core i5 processor according to the dif-

Figure 1: Illustration of Smith-Waterman Algo-
rithm

Figure 2: Percentage of Time-Consumption by Dif-
ferent Parts of Smith-Waterman on PC

ferent lengths of the sequences. Figure 3 shows that when
the sequences length increases, the time consumed by the
calculation of the matrix increases exponentially, whereas
other parts remain almost identical. This increase on exe-
cution time becomes critical even for a regular number of
nucleotidesâĂŹ sequences. Thus, acceleration of the matrix
calculation is the key point of the processing speed. With
an FPGA-based implementation, we can optimize the use
of memory resources, parallelize operations, and finally to
achieve a better performance.

4. ARCHITECTURE DESIGN
According to the profiling of the Smith-Waterman algo-

rithm, the whole system is divided into two parts (see Figure
4): the first part is implemented in the Processing system
(PS) or software region, including the Initialization, Back-
track, Reverse and Result generation; the most computational-
intensive part, Matrix calculation, is implemented in the
Programmable logic (PL) or hardware region. The blocks
in the PS are written in C, while the Matrix calculation is
in VHDL.

The Initialization block handles user requests. According



Figure 3: Execution time of Smith-Waterman’s each
step with different sequence length

Figure 4: Block Diagram of Smith-Waterman on
Heterogeneous Platform

to the length of sequences, it creates the memory spaces of
the score matrix. In addition, it transforms the sequences
from alphabet into binary code, the format which the PL
region can use directly and efficiently. In this design, every
nucleotide is represented in a 4-bit format, e.g. the letter
’A’ is mapped to ’0000’. It also sends the query and refer-
ence sequences to the Matrix calculation block, responsible
for building and performing the parallel computation of the
score matrix. Each value in the matrix will be sent back to
the PS region as soon as its calculation is completed. The
Backtrack block finds out the possible alignment based on
the data sent back, and picks out the one with the highest
score. The Reverse block is dedicated to put the sequences
in the right order. The Result generation block is used to
generate the final results, such as the visualization of the
aligned sequences, execution time, etc.

We paid attention to the implementation of the Programmable
logic, since, for the overall system, it is the main contribu-
tor to the improved performance. The Matrix calculation,
shown on Figure 5, uses a FIFO as PS-PL interface data
exchange and Smith-Waterman processing elements (PEs
array) managed by the PE Controller. The FIFO receives
the sequences to be aligned, while the PE Controller dis-
tributes the workload to the Smith-Waterman PEs. The
latter organizes the array data processing and workload dis-
tribution, according to the commands received from the PS.
The array is a particular data processing organization, whose
number of elements can be changed depending on the scale
of sequences and FPGA resources available. A PE can treat
incoming data in a few clock cycles.

There are many methods to map sequences to PEs; Fig-

Figure 5: Block Diagram of Matrix Calculation in
Programmable Logic

ure 6 shows the conventional one. The first row and column
of the score matrix are assigned zeroes. Due to the data-
dependency, the diagonal marked numbers means that the
values can be computed at the same time. In this figure,
when a PE ends its calculation (yellow cells), it moves along
the diagonal to compute the next neighboring cells. As long
as there are PEs available, it will continue operating auto-
matically with the cells all along the next diagonal (such as
orange and purple cells show). In this way, we can exploit
the full set of PEs all the time.

Figure 6: Conventional method to deploy Smith-
Waterman PEs

The Smith-Waterman PE, whose block diagram is repre-
sented in Figure 7, computes the value of the score matrix by
using just three adders and comparators (two are inside the
MAX block). This operation takes only three clock cycles.
The PE controller designates the pair of values to compute,
and the result destination; back to the controller or to the
next PE for further processing.

Figure 7: Block Diagram of Smith-Waterman Pro-
cessing Element



5. PRELIMINARY RESULT
We implemented the sequence alignment system on a Zed-

board. The ZedBoard contains a Zynq SoC (System-on-
Chip) from Xilinx, which combines a dual-core ARM Cortex
A9 processor (PS) with an FPGA (PL). For convenience, we
used the Xillybus hardware/software interface to establish
communication between the dual-core and the FPGA using
two of the Xillybus’s FIFOs. On that system, data payload
bandwidth can easily reach 200MB/s on each FIFO. The
Matrix Calculation block used for the test was composed by
an array of 100 PEs.

Figure 8 shows the performance improvement when run-
ning two sequences with 5000 nucleotides each by applying
the proposed FPGA-based heterogeneous architecture com-
pared to a pure software implementation running on a dual-
core i5 PC.

Figure 8: Performance of our design and conven-
tional design based on dual-core

The execution time of the Matrix Calculation was signifi-
cantly reduced from 6.2 to 0.295 seconds. However, since the
operating frequency of the dual-core ARM A9 is lower than
that of the Core i5 and the PS-PL communication time is
included, the rest of the algorithm took longer than the Core
i5. Nevertheless, the overall performance is improved. The
execution time of the proposed architecture was reduced by
39.23%.

Table 1 shows the comparison of FPGA (PL) resources
used by the different designs proposed in [9] and [12]. [9]
implemented their architecture on two different FPGA plat-
forms, and [12] only implemented on 2VP70 FPGA plat-
form. As we can see in this table, our design, with 100 PEs,
used the least amount of LUTs and registers. Especially, the
registers’ utilization only took 8.8% of all that the chip can
provide. Thus, it is still possible to implement more PEs to
achieve better performance.

Ref. Device PEs
Number of

Slice LUTs(#)
Number of

Registers(#)
[9] 2VP70-5 168 38,720(57.3%) 15.218(22.5%)
[12] 2VP70-5 138 65,964(99.7%) no data
[9] 2V6000-4 168 31,790(57.3%) 12,488(18.9%)

Ours XC7Z020 100 27,551(51.8%) 9,389(8.8%)

Table 1: Programmable Logic Resources Utilization
Comparison

Our design is running at 66.7 MHz while [9] and [12]
work under 39.2 MHz and 59.3 MHz, respectively. How-
ever, when comparing the performance of the alignment of
two sequences with 5000 nucleotides each, the proposed de-

sign, even with less number of PEs, outperform [9] by 38.9%
and [12] by 11.1%.

6. CONCLUSIONS AND FUTURE WORK
This paper proposed a novel FPGA-based heterogeneous

platform for sequence alignment. Preliminary results show
that it can provide better performance than a pure soft-
ware multi-core solution, and with less resources utiliza-
tion on the Programmable Logic compared to other ap-
proaches. However, there are still many issues to explore,
for instance, power consumption including PS-PL communi-
cation, optimizing data transfer, to provide additional mem-
ory management operators, in particular supporting multi-
ple users/requests/sequences and big data-bases, to finally
come up with a fully flexible and powerful solution.

7. REFERENCES
[1] Polymerase Chain Reaction (PCR). http://www.ncbi.

nlm.nih.gov/genome/probe/doc/TechPCR.shtml

[2] Probabilistic Consistency-based Multiple Alignment of
Amino Acid Sequences.
http://probcons.stanford.edu/

[3] T-Coffee Multiple Sequence Alignment Tools.

[4] The Basic Local Alignment Search Tool (BLAST) .
http://blast.ncbi.nlm.nih.gov/Blast.cgi

[5] Biosequence analysis using profile hidden Markov
models . http://hmmer.janelia.org/

[6] T. Han and S. Parameswaran, ”SWASAD: an ASIC
design for high speed DNA sequence matching,” in
Proceedings of ASP-DAC 7th Asia and South Pacific
and the 15th International Conference on VLSI Design,
pp.541-546, 2002

[7] L. Junjie, S. Ranka,S. Sahni,: ”Pairwise sequence
alignment for very long sequences on GPUs,” in
Proceedings of Computational Advances in Bio and
Medical Sciences (ICCABS), pp.1-6, 23-25 Feb. 2012

[8] Scott Lloyd, Quinn O.Snell. Hardware Accelerated
Sequence Alignment with Traceback. International
Journal of Reconfigurable Computing, Volume 2009,
January 2009 Article No. 9

[9] Yoshiki Yamaguchi, Kuen Hung Tsoi, Wayne Luk.
FPGA-Based Smith-Waterman Algorithm: Analysis
and Novel Design. 7th International Symposium, ARC
2011, Belfast, UK, March 23-25, 2011. Proceedings.
Volume 6578 of Lecture Notes in Computer Science,
pages 181-192, Springer, 2011.

[10] Khaled Benkrid, Ali Akoglu, Cheng Ling, Yang Song,

Ying Liu, and Xiang Tian, âĂIJHigh Performance
Biological Pairwise Sequence Alignment: FPGA versus
GPU versus Cell BE versus GPP,âĂİ International
Journal of Reconfigurable Computing, 2012.

[11] David Greaves,Satnam Singh, Sutirtha Sanyal,

âĂIJSynthesis Of A Parallel Smith-Waterman Sequence
Alignment Kernel Into FPGA Hardware,âĂİ
Many-Core and Reconfigurable Supercomputing
Conference, Berlin, Mar 2009

[12] Van Court, T.Herbordt and M.C, ”Families of
FPGA-based accelerators for approximate string
matching” microprocessors & Microsystems 31,
135-145(2007).


