
Integrating DSP and FPGA evaluation modules for building

high performance computing platforms
Ilan Sousa

Federal University of Pará
Rua Augusto Correa, nº 1

Belém, Pará, Brazil
55 91 32017674

ilan@ufpa.br

Aldebaro Klautau
Federal University of Pará
Rua Augusto Correa, nº 1

Belém, Pará, Brazil
55 91 32017674

aldebaro@ufpa.br

ABSTRACT

The so-called Evaluation Modules (EVMs) are largely present in

the market and are often developed to serve as reference design to

the main integrated circuit (IC) of the EVM. For example, it is

common to find EVMs of microcontrollers, Field Programmable

Gate Array (FPGAs), analog ICs and others. This work

encourages building high performance computing systems by

joining high end Digital Signal Processors (DSP) and FPGA

EVMs, and proposes two schemes for division of the tasks in a

system containing DSP and FPGA, which can take advantage of

both to speed up the processing. This work also takes advantage

of this variety of EVMs and encourages their usage to rapid

design and build prototypes, which allows the designer to choose

components which best fit the target application, with previous

knowledge or even with the budget of the project.

Categories and Subject Descriptors

B.8.2 [Performance and reliability]: Performance Analysis and

Design Aids; B.5.1 [Design] Data-path design.

General Terms

Algorithms, Performance, Design, Verification.

Keywords

Hardware and Software codesign, programmable logic, digital

signal processing, computer architecture.

1. INTRODUCTION
There are applications in many areas that require high

computational power which can be implemented either on

dedicated hardware or in general purpose processor. A good

example is digital signal processing, because it often must process

an amount of data in a determined time before the next data set

arrives.

Another characteristic of these systems is that most of the time

they are not conceived for a single task. For example, if a system

has a microcontroller as the only device capable of performing

computation, it may be responsible for communicating with other

components of the system, storing data, run an operating system

and so on. All these tasks run concurrently with the digital signal

processing, which makes the completion of the latter harder.

In order to solve the problem of multiple tasks running in a single

processing unit, many approaches are widely known on the

literature, one of them is to exploit the usage of both CPU and

dedicated hardware in the same system to accomplish them. The

idea is to take advantage of both and divide the processing to

speed up the result generation. For example, in [3] it is proposed

an approach where two versions of the same algorithm are made:

one for a processor and the other for dedicated logic, letting a

compiler to use a standard modelling approach to choose which

implementation is better for a certain application.

The usage of both DSP and FPGA has been early adopted by

many system designers, which have developed methodologies as

described in [6, 9]. As shown in [4], joint hardware and software

development has been made since the beginning of the digital

logic technology, but in a level that they are integrated in the same

IC, which has a long development cycle and is expensive. And

nowadays, with the advance of IC technology there is a very

popular a type of IC which is called System-on-chip (SoC), which

can be composed by a processor and several peripherals or

coprocessors within the same IC to help the processing.

In this work we propose to take advantage of the high

computational power of both DSP and FPGA to make up a high

performance computing system, using EVMs and high speed

serial communication. The DSP and FPGA together can be used

to make up a system similar to SoCs, with a processor,

coprocessors and a high speed serial communication to decrease

the latency in the communication and the pin count required. The

EVMs turn this system easier and faster to prototype than a

traditional SoC, which is good for rapid design or even low

quantity products.

There are many EVMs which can be used in a system like this,

because it is a common practice of IC manufacturers to sell EVMs

of their products as a reference design to application designers.

Consequently, this strategy provides an abundance of available

options for choice, allowing the designer to choose its preferred

platform or a more suitable to a certain application. Moreover,

these evaluation platforms can be sometimes cheaper than the IC

itself and they have the advantage of skipping a printed circuit

board (PCB) design and development phase in a project.

This work shows an example system composed of two high end

EVMs from Xilinx and Texas Instruments; for the dedicated

hardware part of the system it is used a Xilinx Virtex-6 FPGA

ML605 Evaluation Kit [8] and for the processor it is used a Texas

Instruments TMS320C6670 Evaluation Module [1], which

exchange information through a high speed Serial RapidIO link.

Both EVMs can be examples where the price is almost the same

of the IC itself, as shown in Table 1, which summarizes and

compares the prices of the main IC present in the board and the

whole EVM, where it is possible to realize that the IC and its

EVM have almost the same price. This way, in an application

which do not have strict requirement of power or size, EVMs can

be easily used instead of designing a specific board. Another

advantage of using evaluation boards is that they are largely used

systems, often with several threads in discussion forums which is

a good option for support, besides the manufacturer support itself

and others examples largely available on the internet.

Table 1. Single IC and EVM prices comparison. All prices are

in US dollar.

 Single IC EVM

TMS320C6670 270 400

ML605 1400 1800

This work is organized as follows. Section 2 proposes two

schemes for connecting and dividing the processing between the

EVMs. Section 3 presents and quickly discuss about the two

EVMs used as examples in this work. Section 4 presents an

application using the example system of this paper; and Section 5

presents the conclusions.

2. Task Division
This section proposes two options for the tasks division between

the processing units of the system, which depends on how the

designer is going to use the system or on the application

requirements. The division will also impact on the type of

messages to be exchanged between them.

The task division between FPGA and DSP can be made by taking

advantage of strong points of each one. For example, if an

operation can be executed faster if more concurrency or more

efficient bit-level processing can be exploited, then this operation

is more suitable to be performed by a FPGA. On the other hand, if

an operation can take advantage of built-in features of the DSP,

such as multiply-and-accumulate (MAC) structures or more RAM

memory, the DSP is a good choice for executing that operation.

2.1 Data path
The first division composes a chain or data path with the two

EMVs, where data is acquired or generated by one of the EVMs,

some processing might be made and then the resulting data is

forwarded to the next component of the system. In this scheme,

the division of the tasks can also take advantage of characteristics

of one EVM for performing an algorithm, but the division

depends mainly on what stage the algorithm needs to be

performed.

For example, FPGAs due to its reconfigurable nature have more

general purpose pins (GPIOs) than the DSP, which makes the

FPGAs more suitable for interface with analog-to-digital (ADC)

and digital-to-analog (DAC) converters. Then, in this example,

the FPGA receives the ADC data, and makes some processing, for

example to classify if the received samples must be sent to the

DSP, which saves the communication link bandwidth and DSP

processing. This example is closely related to communication

systems, where an ADC is continuously sampling, but only in a

determined time the received samples make up a signal from the

communication partner which really contains information. In

order to classify the input data, the FPGA can use techniques such

as cross-correlation and the one described in [7]. After the

classification, the FPGA sends to the DSP only samples

containing information. Clearly, it saves DSP processing time

because looking for a known signal normally involves large

amount of data and CPU time, and the FPGA is capable of

making classification by the time each single sample arrives.

The lines above explain the receiving chain of the system,

whereas the transmitting chain uses data generated or acquired by

the DSP. Commercial DSPs normally have means to interface

with other systems, this way, for this example the DSP receives

data from an Ethernet interface and modulates the data using

some digital modulation, and sends the resulting data to the

FPGAs, which in turn makes some processing before sending to

the DAC. Figure 1 illustrates the system example given above.

Another example uses the FPGA as an intermediate point between

the DSP and a peripheral, because it is common to be included in

the FPGA EVMs audio and video interfaces, which can be used to

extend the DSP set of peripherals and also use the data path

scheme to save DSP processing time or even to complement the

DSP set of peripherals with one that is not present in its EVM. In

this case, the ADC and DAC of Figure 1 are the peripheral

interface, or the converters present in the peripheral.

Figure 1. Example of FPGA and DSP composing a data path

system.

2.2 Hardware accelerator
The second division scheme proposed in this work uses the FPGA

as an extension to the DSP peripherals or coprocessors. In this

scheme the FPGA can be programmed to contain implementations

of several specific algorithms and the DSP acts as a client, that

sends an amount of data and after the operation is completed, the

FPGA sends the results to the DSP.

The algorithms to be implemented in the FPGA can be one with

high computational requirement and high potential of

parallelization, such as correlation or Fast Fourier Transform

(FFT). Moreover, the FPGA vendors provide a large variety of

Intellectual Property (IP) cores, which are freely available to the

user or available under some software or tool license, which can

be included in the FPGA to be available as a coprocessor to the

DSP. Examples of IP cores commonly found are FFT, floating

point unity, filters, Up/Down converters, etc.

This way the designer is only responsible for providing an

infrastructure to include several coprocessors in the FPGA, in

case all the required coprocessors are implemented as IP cores.

Figure 2 shows how FPGA provides the IPs interface to the DSP,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SForum’14, September 1–5, 2014, Sergipe, Aracaju, Brazil.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

where the FPGA code is responsible for receiving an amount of

data with an identifier to which coprocessor to be used, and by the

end of processing, responding to the DSP with the resulting data.

Figure 2. Example of the FPGA as coprocessor system to the

DSP.

It is common in some SoCs to have processor and several

coprocessors in the same IC. Thus, case the chosen DSP EVM is

this kind of system, this scheme can extend the DSP set of

available coprocessors, with other operations implemented in the

FPGA. However it is not restricted to extend with different

operations, because if a coprocessor within the DSP becomes

busy during its execution, the DSP can use another coprocessor

within the FPGA to perform the same operation, this way the DSP

can send two requests in parallel.

3. Example system
This section presents with more details the example system

mentioned before. Basically this system is composed of two high

end EVMs: the TMDSEVM6670 and ML605 from Texas

Instruments and Xilinx, respectively. The former is the DSP and

the latter is the FPGA EVM. These EVMs exchange information

through a Serial RapidIO link.

3.1 DSP
The DSP platform chosen to this example is a Texas Instruments

multicore fixed and floating point SoC, the TMS320C6670,

which has several accelerators available for common physical and

medium access layer algorithms, of which the FFT Coprocessor

(FFTC), the Network Coprocessor (NETCP) and the Serial

RapidIO (SRIO) are examples.

Besides having a rich set of coprocessors, the TMS320C6670

SoC also is a quad-core system, where all cores have simultaneous

access to all coprocessor and peripherals. This way, it is easy to

happen a situation where one coprocessor being used by a core

when another core try to use it, then to have the same operation

available in the FPGA can avoid the second core to be blocked

waiting for the coprocessor to be free.

3.2 FPGA
The FPGA board used in this example is the Xilinx Virtex 6

FPGA ML605 Evaluation Kit, which is composed of a Virtex 6

LXT FPGA and several peripherals. The FPGA, due to its

reconfigurable nature, can be programmed to perform a broad

variety of hardware functionalities, such as controllers for the

peripherals present in the board or any arbitrary hardware.

Moreover, Xilinx also provides IP cores which perform several

different tasks; they are usually available as open or encrypted

Hardware Description Language (HDL) code.

The IP cores are used to speed up the development, since they are

extensively tested by Xilinx and they cover a large range of

algorithms and functionalities. IP cores can be used for

standardized functionalities, and the main example is the Xilinx

Serial RapidIO core, which implements the specification version

2.2 of the protocol, that is used for exchanging data with the DSP

in this example. The in-house developed HDL code performs

application-specific tasks, such as data formatting and signaling

which cannot be found in IP cores, because of their specific

functionality.

3.3 RapidIO
The RapidIO is a packet-switched, high speed serial

communication standard, which is divided in parallel and serial

parts. This example uses the Serial RapidIO, because it is the

protocol that achieves the highest data rates among the supported

between the two EVMs. Moreover, it provides connectivity

between several components by using a switch or between two

components directly, this second option is used in this example.

3.4 Analog interface
For the analog interface of this example system an Analog

Devices AD-FMCOMMS2 EVM [2] is used, which is a host

board for the high integrated radio frequency (RF) transceiver

AD9361 IC. Its main features are the capability of operating in a

wide range of frequencies and the implementation of a complete

RF interface in a single IC. It is composed by power amplifiers to

drive the antennas, low noise amplifiers to receive signal, up and

down converters, oscillators, etc.

4. Example application
This section presents an example application of a generic modem

using the system of Section 3 and the scheme of data path

presented in Section 2. The technique for modulation is

Orthogonal Frequency-division Multiplexing (OFDM), which is a

popular technique used in communication systems such as xDSL,

WiFi and others. It has a relatively high computational

requirement, because it needs a FFT operation and all the

processing normally needs to be done within a strict timing. A

good explanation about OFDM principles can be found in [5].

Basically, this system is composed by the two digital EVMs

presented in previous sections connected by a Serial RapidIO link,

and the AD-FMCOMMS2 EVM for performing up and down

conversion, filtering and sampling.

In this example application there are two systems composed by

the EVMs shown in this work, which exchange information

through a wireless link using OFDM. They use the same

frequency band for transmitting and receiving data. Thus, a

scheme to avoid both modems sending at the same time is needed.

This is done by implementing an arbitration of the channel, where

a modem needs to wait its turn before sending data, which is

called in the literature Time Division Duplexing (TDD). Figure 3

illustrates this arbitration using a state machine, where each state

represents the operation being performed by the modem. In Tx,

the modem is transmitting, in Wait 1 it is waiting for its

communication partner to send data, in Rx the communication

partner has already started sending data and the modem is saving

the samples and finally in Wait 2 the modem simply is waiting

before sending again, which corresponds to the guard interval

used in commercial technologies, such as WiFi.

Figure 3. TDD arbitration used in the example.

The arbitration presented before works well when the modems

have some means to keep their synchronization which is not an

easy task. Then, to keep things easy to implement, it is more

suitable to send a preamble before sending any data signal.

Figure 4 illustrates the signal transmitted in state Tx, where before

sending the data signal the modem sends a preamble to inform the

communication partner about the beginning of valid data signals.

Figure 4. Structure of the signals of the example.

The preamble is a signal known by both the transmitter and the

receiver, and the receiver in state Wait 1 is actually looking for it,

and once the receiver tracks the preamble it knows that the next

samples are valid and can be saved.

The preamble can be anything even noise, the only requirement in

this case is that the receiver knows what is going to be sent, and

then the detection can be made by performing cross-correlation

between the received signal and the reference signal in the

receiver. However cross-correlation is a computational intensive

operation which uses a long time of the CPU in case it is

implemented in the DSP or many resources in case it is

implemented in FPGA. There are many related work in the

literature aiming to overcome this problem, such as the one

described in [7], which generates a signal with two identical

halves in time domain. This way the receiver does not need to

store the preamble and it just looks for a signal with two identical

halves, which can be implemented in a simpler way then cross-

correlation.

4.1 Processing division
A simple division is made because the DSP has a FFT

coprocessor, thus this coprocessor is used to limit the area where

each EVM works. This way, the DSP is responsible for making

frequency domain processing whereas the FPGA performs time

domain processing.

The transmitting operation starts when the DSP receives data from

an Ethernet interface and performs generation of OFDM symbols,

which is comprised of several steps and the last one is the inverse

FFT (iFFT) to generate a time domain signal to be sent to the

FPGA. In the transmit chain, the FPGA makes the cyclic prefix

(CP) extension and sends the preamble before sending the symbol

in a transmission opportunity described in Figure 3.

In the receive chain the FPGA is continuously looking for a

preamble in state Wait 1, and once it finds, preamble and CP are

removed and the samples are forwarded to the DSP, which makes

the processing of the OFDM symbol to recover the Ethernet

packet, which is coded within this symbol.

In this example application the DSP generates signals to be

transmitted, by feeding an implementation of a modulator with

packets coming from the Ethernet interface, and after the resulting

signal is sent to the FPGA which responsible for making time

domain processing and to arbitrate the data exchange according to

Figure 3.

5. Conclusions
This work presented and encouraged the adoption of EVMs to

rapid building prototypes, which has the main advantage of

avoiding printed circuit board design and implementation, which

normally requires long time for design and testing and is normally

expensive due to the low quantity required in these kinds of

products. Moreover it is also good as a resource for teaching in

areas that involve computer architecture, telecommunications,

algorithms and many others. It should be noted that the EVMs

manufacturers normally provide several example designs and

maintain discussion forums regarding their products, which are

huge sources of information.

6. REFERENCES
[1] Advantech, TMX320C6670 Evaluation Module, accessed

April 22, 2014, http://www.advantech.com/Support/TI-

EVM/6670le of.aspx.

[2] Analog Devices, ”AD-FMCOMMS2-EBZ User Guide”,

2014 - accessed April 22, 2014,

http://wiki.analog.com/resources/eval/user-guides/ad-

fmcomms2-ebz.

[3] B. Grattan, G. Stitt, and F. Vahid, “Codesign-extended

applications,” in Hardware/Software Codesign, 2002.

CODES 2002. Proceedings of the Tenth International

Symposium on, 2002, pp. 1–6.

[4] J. Teich, “Hardware/software codesign: The past, the present,

and predicting the future,” Proceedings of the IEEE, vol.

100, no. Special Centennial Issue, pp. 1411–1430, May

2012.

[5] National Instruments, “OFDM and Multi-Channel

Communication Systems,” 2013 - accessed April 2014,

http://www.ni.com/white-paper/3740/en/.

[6] Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and

William A. Wulf, “A framework for hardware / software

codesign.,” IEEE Computer, vol.26, no. 12, pp. 39–45, 1993.

[7] T.M. Schmidl and D.C. Cox, “Robust frequency and timing

synchronization for ofdm,” Communications, IEEE

Transactions on, vol. 45, no. 12, pp. 1613–1621, Dec 1997.

[8] Xilinx, UG534 - ML605 Hardware User Guide, 2012

(accessed April 22,2014),

http://www.xilinx.com/support/documentation/boards and

kits/ug534.pdf.

[9] Y. Takeuchi, K. Shibata, and H. Kunieda, “Codesign

methodology on programmable hardware and software

system,” in Circuits and Systems, 1994. APCCAS ’94., 1994

IEEE Asia-Pacific Conference on, Dec 1994, pp. 182–187.

