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Abstract—In the modern world, with intensive use of the
Internet via mobile devices, is increasingly required new and
appropriate security alternatives. Due to size and capabilities
limitations of many existing embedded devices, there has been a
possibility, using lightweight cryptography. This paper presents
a new hardware implementation (VHDL and FPGAs) of the
lightweight cryptographic algorithm HIGHT, as well as an
overview of cryptography. We show the resources used and the
time to encrypt and decrypt a message, and the results are
promising.
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I. INTRODUCTION

Cryptography can be described as a set of techniques to
encrypt (encode) information. The main purpose of encryption
is to protect the information contained in a document, as
it usually becomes unreadable after this process. To retrieve
the information contained in the document, a reverse process
called decrypt is required. Encryption techniques may be de-
scribed by algorithms, which makes it feasible implementation
by computers [1].

Over time, several different methods have been developed
in order to make it difficult to decode encrypted files. Currently
there are sophisticated methods that require a password to
retrieve information, such as asymmetric key algorithms, for
example. Other methods, such as hash functions, do not allow
the decryption of once encrypted content, serving as digital
signature of files [1].

The growing evolution of cryptography can be explained by
the development of computing. Strongly widespread in modern
world, computing has become ubiquitous and is present in
the daily lives of most people. A simple example of the
importance of encryption in the world today is the growing
use of smartphones for banking transactions. If there were
no safe ways to protect the information entered on banking
applications, invasions to accounts of thousands of people
would be easily seen [2], [3].

However, classical cryptographic algorithms such as RSA,
ECC and AES are not suitable for all currently devices.
Most of them operate based on battery, which requires a low
consumption by the algorithm. Others have a reduced capacity
and may not support keys over 128 bits, as is common in
most asymmetric algorithms. For these devices it is necessary

a different approach: the use of lightweight cryptographic
algorithms [2], [4], [5].

The basic feature needed for a lightweight cryptographic
algorithm is to meet the limitations of the devices for which
it was designed, without losing the security focus. Even with
limitations in relation to classic algorithms, the lightweight
cryptography must match the classical in terms of functionality
and safety [2], [6].

Aiming hardware implementations, usually faster than
those in software, this paper presents an implementation of
the HIGHT algorithm [7] in hardware description language
VHDL. This algorithm was chosen based on its results in
previous works, discussed in Section III.

The rest of the paper is organized as follows: Section II
presents concepts of cryptography. Section III list some re-
lated work and Section IV, the adopted methodology. The
Subsections IV-A and IV-B contain the description of the
algorithm HIGHT and details of its implementation in VHDL,
respectively. Section V presents the results obtained. Finally,
we present our conclusions and suggestions for further work
in Section VI.

II. TECHNICAL BACKGROUND

Two major categories of cryptographic algorithms are the
block cipher and stream cipher. The former groups the infor-
mation to be encrypted into blocks from 8 to 16 bytes before
the encryption process and then encrypts the whole block. It
is possible to use chaining encryption to hinder attacks. The
latter encrypts text one bit at time, using the logical operation
xor between the bit and the key [1].

A key is a unique string that is used to encrypt and/or de-
crypt a file. There are two classes of algorithms with respect to
the key: symmetric and asymmetric. Symmetric algorithms use
only one key to encrypt and decrypt the message, which is a
private key that must be distributed among all parties involved
in the communication. In the asymmetric cryptography, there
are two keys, one public and another private. They function
as a plug: while one is used to encrypt, the other is able to
restore the information and vice-versa [1].

A lightweight encryption application is its possible use in
Radio Frequency Identification (RFID) technology, an auto-
matic identification method using radio signals. RFID tags
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generally have high limitations of computational resources,
such as those listed by Saarinen and Engels in [4]:

• The total integrated circuit area available for im-
plementing the entire device’s logic, including the
security, is reduced.

• The power used can affect the maximum distance of
communication between a reader and the RFID tag –
when there are power peaks, this range is decreased.

• The power depends on the device’s clock frequency.
Thus, security implementations need to minimize the
use of clock cycles.

The lightweight cryptography is, in fact, the best secu-
rity option for such devices. As noted by Katagi and Mo-
riai [2] lightweight cryptographic algorithms meet precisely
the restrictions lifted by Saarinen and Engels [4]. Especially
algorithms designed to hardware fit this case: low power
consumption and small footprint, which leads to interest in
implementing such algorithms in VHDL.

III. RELATED WORK

Eisenbarth et al. [5] compared some light cryptographic
algorithms implemented in software. The difficulty in reducing
the size of HIGHT code did not impact on performance: both
encryption and decryption led 2964 cycles per block, reaching
a transfer rate of 80.3 Mbps at 4MHz – the fastest of hardware-
oriented algorithms.

Cazorla et al. [8] made the implementation of 17 Cryp-
tographic Algorithms in C programming language, analyzing
aspects such as software performance and memory usage.
HIGHT used 18 and 3130 bytes of RAM and ROM, respec-
tively, one of the few hardware-oriented algorithms with good
results.

Alizadeh et al. [9] implemented the algorithms HIGHT,
KATAN, KLEIN and TEA in Atmel AVR ATtiny45 microcon-
troller using assembly. The KLEIN performed better in terms
of energy consumption (25.98 µJ against 80.87 µJ of HIGHT),
but its memory usage was the highest among all others.
KATAN obtained the best results in this regard, but consumed
more energy. HIGHT and TEA had similar performances,
being a good alternative in general cases.

Koo et al. [10] implemented the algorithms RC5, Skipjack
and HIGHT on Mica2 Mote sensor based on 8 bit Atmel AVR
processor. The usage of the RAM and ROM of HIGHT was
568 and 3906 bytes (greater usage of RAM and second largest
ROM use), respectively. The operation time 7.413 s was 200ms
higher than the other two algorithms. In power consumption,
measured in CPU cycles, HIGHT reached second place with
64355 cycles. Although Skipjack provided better results than
HIGHT, it does not provide enough security [11].

The VHDL implementation of HIGHT in FPGAs by Yalla
and Kaps [12] reached good results: only 91 slices consumed
and encryption speed of 65.5 Mbps. A Xilinx Spartan-3 board
was used for compilation. This implementation exceeded all
lightweight implementations of AES published so far.

IV. METHODOLOGY

A. Algorithm Description

HIGHT algorithm (HIGH security and light weighT) was
proposed in 2006 by Hong et al. [7]. This is a block cipher
lightweight cryptographic algorithm. The size of each block
is 64 bits and the keys have 128 bits. This algorithm is
characterized as a low-cost and low-power, having an ultra-
light implementation [7], [8].

HIGHT operating principle is based on xor operations,
additions to applying mod 28 and shifts bitwise to the left.
Original paper [7] implementation was performed with 3048
logic elements in a 0.25 µm technology. Tables I and II contain
the meaning of variables and operators used in the algorithm,
respectively.

TABLE I. MEANING OF USED VARIABLES

Variables Meaning
P Initial block to be encrypted
C Final block (already encrypted)

MK 128 bits user Master key
WK 128 bits Whitening key
SK Set of 128 8 bits Sub keys

X[0,32] Auxiliary blocks used during processing
delta Constant vector generated by LFSR

TABLE II. MEANING OF USED OPERATORS

Operators Meaning
(xor) Exclusive OR bitwise
(plus) Modular addition (mod 28)
(shl) Bitwise left shift

HIGHT algorithm can be described by the pseudo code
in Figure 1, based on [7]. The described algorithm takes into
account only the encryption process since, the decryption is
simple reverse the functions of processing and rotation, and
also the order of application thereof. Each procedure used in
the algorithm can be described as follows:

1) HightEncryption: Receives the text P and the user’s
master key MK. This is the main procedure.

2) KeySchedule: Receives the master key MK and call
the methods of key generation 3) and 5).

3) WhiteningKeyGeneration: Use the master key MK to
generate the 8 bytes white key WK used in the initial
and final transformations.

4) ConstantGeneration: Generates 128 7 bit delta con-
stant values to be used in the generation of sub
keys SK by a LFSR process. The initial delta is
(1011010)2 – 0x5A in hexadecimal.

5) SubkeyGeneration: Generate, from the delta constant
vector, the 128 8 bits sub keys SK used in text rotation
function – 4 bytes of SK by RoundFunction.

6) InitialTransfomation: Transforms the input text P into
X0 through (xor) and (plus) operations with the first
4 bytes of WK key.

7) RoundFunction: Uses the auxiliary functions F0 and
F1 to rotate and generate new intermediaries texts Xi.

8) FinalTransfomation: Transforms the last intermediate
text X32 into output text C through (xor) and (plus)
operations with the last 4 bytes of key WK.



HightEncryption(P, MK)
KeySchedule(MK, WK, SK)
InitialTransfomation(P, X, WK)
for i := 0 to 31

RoundFunction(X, SK, i)
FinalTransfomation(X, C, WK)

KeySchedule(MK, WK, SK)
WhiteningKeyGeneration(MK, WK)
SubkeyGeneration(MK, SK)

WhiteningKeyGeneration(MK, WK)
for i := 0 to 7

if (i in [0,3]) then WK_(i) := MK_(i+12)
else WK_(i) := MK_(i-4)

ConstantGeneration
s0 := 0; s1 := 1; s2 := 0; s3 := 1; s4 := 1; s5 := 0; s6 := 1;
delta_0 := s6||s5||s4||s3||s2||s1||s0
for i = 1 to 127

s_(i+6) := s_(i+2) (xor) s_(i-1)
delta_(i) := s6||s5||s4||s3||s2||s1||s0

SubkeyGeneration(MK, SK)
Run ConstantGeneration
for i := 0 to 7

for j := 0 to 7
SK_(16i+j) := MK_(j-i mod 8) (plus) delta_(16i+j)
SK_(16i+j+8) := MK_(j-i mod 8 + 8) (plus) delta_(16i+j+8)

InitialTransfomation(P, X, WK)
X_(0,0) := P_(0) (plus) WK_(0)
X_(0,1) := P_(1)
X_(0,2) := P_(2) (xor) WK_(1)
X_(0,3) := P_(3)
X_(0,4) := P_(4) (plus) WK_(2)
X_(0,5) := P_(5)
X_(0,6) := P_(6) (xor) WK_(3)
X_(0,7) := P_(7)

F0(X) := (X(shl)1) (xor) (X(shl)2) (xor) (X(shl)7)
F1(X) := (X(shl)3) (xor) (X(shl)4) (xor) (X(shl)6)

RoundFunction(X, SK, i)
X_(i+1,1) := X_(i,0)
X_(i+1,3) := X_(i,2)
X_(i+1,5) := X_(i,4)
X_(i+1,7) := X_(i,6)
X_(i+1,0) := X_(i,7) (xor) (F0(X_(i,6)) (plus) SK_(4i+3))
X_(i+1,2) := X_(i,1) (plus) (F1(X_(i,0)) (xor) SK_(4i+2))
X_(i+1,4) := X_(i,3) (xor) (F0(X_(i,2)) (plus) SK_(4i+1))
X_(i+1,6) := X_(i,5) (plus) (F1(X_(i,4)) (xor) SK_(4i))

FinalTransfomation(X, C, WK)
C_(0) := X_(32,1) (plus) WK_(4)
C_(1) := X_(32,2)
C_(2) := X_(32,3) (xor) WK_(5)
C_(3) := X_(32,4)
C_(4) := X_(32,5) (plus) WK_(6)
C_(5) := X_(32,6)
C_(6) := X_(32,7) (xor) WK_(7)
C_(7) := X_(32,0)

Fig. 1. HIGHT’s Pseudo-code

B. VHDL Implementation

Our VHDL implementation of HIGHT was based on
a software implementation in C programming language by
Cazorla et al. [8]. We used a finite state machine (FSM)
abstraction in our implementation shown in Figure 2.

Fig. 2. HIGHT’s Finite State Machine

The algorithm input is a text P and a master key MK. There
is also a control signal, designating which operation should
be performed: encrypt or decrypt the text. Moreover, as the

implementation was based on FSM, it was necessary to use
clock and reset, since, to transition to a next state, it must be
ensured that all operations of current state finished.

For a better code organization, it was divided into two files:
one containing the logic of the FSM and the other with the
implementations of the functions and procedures. The main
code IV-B contains the entity and architecture, where inputs,
outputs, operations and FSM transitions are defined. Auxiliary
code consists of a package included by main code.

---------------------------------- Libraries: ----------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use work.hight_package.all;
----------------------------------- Entity: ------------------------------------
entity HIGHT is
port (
txt_in: in std_logic_vector (0 to 63);
mk: in std_logic_vector (0 to 127);
clk: in std_logic;
reset: in std_logic;
encrypt: in std_logic;
txt_out: out std_logic_vector (0 to 63) );

end HIGHT;
-------------------------------- Architecture: ---------------------------------
architecture HIGHT of HIGHT is
------------------------------- Type Definition --------------------------------
type states is (KEY_SCHEDULE, INITIAL, ROUND, FINAL,
INVERSE_FINAL, INVERSE_ROUND, INVERSE_INITIAL, OUTPUT);
----------------------------- Signals Declaration ------------------------------
signal STATE: states;
signal wk: std_logic_vector (0 to 63);
signal sk: std_logic_vector (0 to 1023);
signal txt: std_logic_vector (0 to 63);
-------------------------------- Logic of FSM ---------------------------------
begin
process (clk, reset)
begin
if reset = ’1’ then
STATE <= KEY_SCHEDULE;

elsif clk’event and clk=’1’ then
case STATE is
when KEY_SCHEDULE =>
WhiteningKeyGeneration (mk, wk);
SubkeyGeneration (mk, sk);
if encrypt = ’1’ then
STATE <= INITIAL;

else
STATE <= INVERSE_FINAL;

end if;
txt <= txt_in;

when INITIAL =>
InitialTransfomation (wk, txt);
STATE <= ROUND;

when ROUND =>
RoundFunction (sk, txt);
STATE <= FINAL;

when FINAL =>
FinalTransfomation (wk, txt);
STATE <= OUTPUT;

when INVERSE_FINAL =>
inverseFinalTransfomation (wk, txt);
STATE <= INVERSE_ROUND;

when INVERSE_ROUND =>
inverseRoundFunction (sk, txt);
STATE <= INVERSE_INITIAL;

when INVERSE_INITIAL =>
inverseInitialTransfomation (wk, txt);
STATE <= OUTPUT;

when OUTPUT =>
txt_out <= txt;

end case;
end if;

end process;
end architecture;

Fig. 3. VHDL Main Code

V. RESULTS AND DISCUSSION

We used the Altera tools Quartus II – versions 11.0
and 13.0.0 (web edition) – for the VHDL code compila-
tion. The target board belongs to Cyclone II family, model
EP2C3F672C6 with a total of 33216 logic elements. Table III
contains a summary of the build process by the two versions
of the tool.



TABLE III. TIME SIMULATION RESULTS

Attributes Version 11.0 Version 13.0.0
Logical Elements 6447 6608

Combinational Functions 6321 6321
Total Registers 1014 1014

Total Pins 259 259

We observed that the total amount of logic elements in
version 11.0 was 6447, whereas in version 13.0.0, the number
rose to 6608. Both results have more than twice as many log-
ical elements suggested by Hong et al. [7] (3048). We justify
this fact by the presence of both encryption and decryption
processes.

In functional simulations, generated by an Altera simula-
tion tool, we could verify the correctness of our implementa-
tion. We performed an encryption with random P and MK.
The result text C was then set as input in two decryption
processes: the first with the same MK and the second with an
one-bit different MK. As expected, the former was successful
in retrieving the original text P, while the latter was not.

Time simulations were also performed for both versions of
Quartus II. Table IV summarizes the results obtained in those
simulations. Column # Clocks represents the needed number
of clocks to complete the encryption/decryption process. Delay
is relative to the amount of time elapsed after the rise of the last
clock to stabilize output, a period in which there is generation
of noise at the output.

TABLE IV. TIME SIMULATION RESULTS

Version Frequency # Clocks Clock size Delay Transfer Rate
11.0 9.25 MHz 5 108.0 ns ≈ 13.7 ns 128 Mbps

13.0.0 11.36 MHz 5 88.0 ns ≈ 9.8 ns 157 Mbps

Table V synthesizes ours results of frequency and transfer
rate of HIGHT implementation and those obtained by other
authors.

TABLE V. SYNTHESIZED RESULTS

Implementation Frequency Transfer Rate Implementation
Version 11.0 9.25 MHz 128 Mbps Hardware (VHDL)

Version 13.0.0 11.36 MHz 157 Mbps Hardware (VHDL)
Eisenbarth et al. [5] 4 MHz 80.3 Mbps Software
Yalla and Kaps [12] not available 65.5 Mbps Hardware (VHDL)

Eisenbarth et al. [5] implementation has a better transfer
rate than Yalla and Kaps [12]. However, the former used a
software implementation, while the latter, a hardware one.
Our results outperformed both implementations. It is important
to notice that Yalla and Kaps [12] used a optimized FSM
approach, with a counter and additional logic for generate
control signals, while we implemented a simpler FSM, using
clock and reset in VHDL code.

VI. CONCLUSION

Cryptography is a constantly advancing area, being driven
by ubiquitous computing. Due to the large amount of im-
portant devices with limited space and power consumption,
the lightweight cryptography is a viable solution for security
on such devices. In particular, algorithms implemented in
hardware are usually more efficient than those designed for
software.

This work presented a VHDL implementation of HIGHT
algorithm. Some tests were conducted to demonstrate the
functionality and correctness of it. With simulations in versions
11.0 and 13.0.0 of the Altera Quartus II tool, we reached
a transfer rate of, respectively, 128 Mbps and 157 Mbps at
9.25MHz and 11.36MHz. These results were higher than
those found by Eisenbarth et al. [5] and Yalla and Kaps [12].

The main suggestion of future work is to optimize our
VHDL code to reduce the amount of logic elements used. To
do so, one way is to optimize the FSM used. Other possible
path to follow is the implementation of other lightweight cryp-
tographic hardware-oriented algorithms in VHDL language to
compare the results obtained previously by other authors.
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