
Implementations and Comparisons of High-Speed

Multipliers for Reconfigurable Devices
Tiago Patrocinio

Federal University of Piauí

Department of Computing

Teresina, Brazil

tiagodsp93@gmail.com

Sinésio Santos da Silva Neto
Federal University of Piauí

Department of Computing

Teresina, Brazil

sn.sinesio@gmail.com

Ivan Saraiva Silva
Federal University of Piauí

Department of Computing

Teresina, Brazil

ivan@ufpi.edu.br

ABSTRACT

Nowadays multipliers are essential components in integrated

systems implementations. They have different architectures and

implementations techniques that improve performance of the

overall architecture. The purpose of this work is propose some

architectures for implementing high-speed multiplier for

reconfigurable devices. Architectures based on Booth Algorithm

and Wallace Tree were developed and analyzed considering

performance and area used in the reconfigurable device.

Categories and Subject Descriptors

B.2 [Arithmetic and logic structure]: Design Styles—pipeline;

B.2 [Arithmetic and logic structure]: High-Speed arithmetic; B.2

[Arithmetic and logic structure]: General

General Terms

Algorithms, Measurement, Performance, Design.

Keywords

Hardware; arithmetic; multiplier; high-speed;

1. INTRODUCTION
Multipliers are key hardware blocks for performance of integrated

systems such as microprocessors, graphics processors, co-

processors, among others. Architectures and implementations of

these components have a huge impact on logical and arithmetical

units (ULAs), which can determine the final performance of the

overall integrated system. Eventually efficient improvements on

implementation and architectural organization of such components

are necessary. Considering this, in this paper we developed a

multiplier architecture based on Booth’s Algorithm [1] and

Wallace Tree [2], which allows obtain a efficient multiplier.

The rest of this paper is organized as follows. The second section

presents Booth’s Algorithm, Wallace Tree and Adders used to

design the multiplier, discussing their implementation advantages.

Third section shows performance results obtained from some

multipliers designed from variations of their internal components.

Section four presents conclusions and future works.

2. ARCHITECTURE COMPONENTS
The multiplier implementation presented in this paper uses the

Booth’s Algorithm to generate partial products and an Wallace

Tree to reduce them. Along this section, the Booth Algorithm and

Wallace Tree are briefly presented.

2.1 A. Booth’s Algorithm
The Booth’s Algorithm, also known as Radix-2 Booth’s

Algorithm, allows multiplication of positive and negative binary

numbers in two’s complement, commonly used in multiplier circuit

for signed numbers. The version of the algorithm used in this paper

is Radix-4 Booth’s Algorithm [3]. This version was chosen

considering its simplicity and easily deployment, among other

advantages that will be discussed soon. The algorithm consists in

codifying one multiplication operand, reducing the number of

partial products by half, so reducing chip area. The adoption of this

algorithm resulted in improvements in multiplication of long

numbers.

As presented in Figure 1, Radix-4 Booth Algorithm encodes the

multiplier operand, where a zero bit is appended in less significant

bit. The operand is analyzed from the less significant to most

significant bit, grouped in blocks of three bit, whose the most

significant bit of one block overlaps the less significant of the next

block.

Figure 1. Three bits block division example of the multiplier

operand with a zero bit appended in less significant bit (a).

Result of codification (b).

Each block of three bits codifies according with Table 1, resulting

in multiplication of the multiplicand operand by ±1, ±2 or 0, to

generate the partial products, which will be summed posteriorly.

Table 1. Radix-4 partial product generation table.

Block Partial Product

000 Multiplication of the multiplicand by 0

001 Multiplication of the multiplicand by 1

010 Multiplication of the multiplicand by 1

011 Multiplication of the multiplicand by 2

100 Multiplication of the multiplicand by -2

101 Multiplication of the multiplicand by -1

110 Multiplication of the multiplicand by -1

111 Multiplication of the multiplicand by 0

The improvements of Radix-4 algorithm from Radix-2 is in the

recodification way, grouping blocks of three bits, allowing

generation of N/2 partial products, where N is the length of

operands. In contrast, the Radix-2 algorithm groups 2 Bits blocks,

generating N partial products, not being recommended for

multiplication of huge numbers.

Another approach is Radix-16 Booth’s Algorithm [4], aiming

reduce partial products of N-bits multiplication to N/4, therefore

reducing subsequent operations.

Figure 2. Radix-16 codification blocks division.

The process codifies blocks of 5 bits, as shown in figure 2, and

then analyses according with Table 2, which two combination of

bits can generate same partial product.

Table 2. Radix-16 partial product generation table.

Bit Block
Partial

Product
Bit Block

Partial

Product

00000, 11111 0 11101, 11110 -1 * MPLD

00001, 00010 +1 * MPLD 11011, 11100 -2 * MPLD

00011, 00100 +2 * MPLD 11001, 11010 -3 * MPLD

00101, 00110 +3 * MPLD 10111, 11000 -4 * MPLD

00111, 01000 +4 * MPLD 10101, 10110 -5 * MPLD

01001, 01010 +5 * MPLD 10011, 10100 -6 * MPLD

01011, 01100 +6 * MPLD 10001, 10010 -7 * MPLD

01101, 01110 +7 * MPLD 10000 -8 * MPLD

01111 +8 * MPLD

Figure 3 shows the general diagram of Booth‘s Algorithm used to

design the multiplier.

Figure 3. General structure architecture diagram of Booth’s

Algorithm.

2.2 Wallace Tree
Multiplication circuits need to perform successive additions of

partial products, generating dependencies between operations. The

Wallace Tree offers an efficient structure for implement parallel

faster additions of the partial products. It avoids carry propagation,

requiring only an addition at the end of tree to obtain the result.

Compressors [5] are the basic blocks used in the implementation of

the Wallace Tree. The use of compressors contributes to decrease

the amount of additions in a multiplication. In this paper 4:2

Compressors [5] are used, reducing groups of four partial products.

4:2 Compressors have five inputs A, B, C, D and CIN to generate

three outputs SUM, CARRY and COUT, as shown in figure 4.

Figure 4. 4:2 Compressor structure (a). Logic architecture (b).

As shown in figure 5, the organization of the Wallace Tree with 4:2

compressors groups four partial products in parallel to perform the

compression at each level of the tree. The output of each

compressor becomes an input at next level, until all partial

products become reduced to two inputs for addition at the end of

tree.

Figure 5. Wallace Tree structure with 4:2 compressors.

The implementation of the Wallace Tree in pipelined way [6] aims

to improve the frequency of operation. Moreover it allows

performing successive faster multiplications, adding registers

between tree’s levels.

2.3 Adders
Efficient implementation of the adder induces huge impact in the

multiplier performance. A traditional adder is the Carry-Propagate

Adder [7]. It has a simple architecture, but offers inefficient

performance, due carry propagation from less significant bit to

most significant.

A bit more complex adder's architecture as Carry Look Ahead

Adder [7] (figure 6) allows forwarding carry due the addition of

extra signals that calculates the Generation and Propagation signals

(figure 7) [7]. The Carry Look Ahead Adder reduces the critical

path and improves the operation speed.

Figure 6. Carry Look Ahead Adder architecture

Figure 7. Carry Look ahead Cell (CLC) with generation and

propagation carry signals.

3. Architectures, Results and Comparison
To design the multiplier, various architectural organizations are

available. Each one has significant impact in the overall

performance. This paper presents some architectures, their

performance comparison and discuss about their benefits.

The multipliers architectures designed in this paper have Wallace

Tree with and without pipeline, both using Radix-4 and Radix-16

Booth`s Algorithm to generate partial products. Each type of

architecture implements different type of adders in Wallace Tree. In

addition of Carry-Propagate Adder and Carry Look Ahead Adder,

was included the Altera Adder. Figure 8 shows the general

architecture diagram.

BOOTH
RECODER

ADDER
WALLACE
TREE

MULTIPLICAND

PARTIAL
PRODUCTS

RESULT

Figure 8. Multiplier general structure diagram.

Table 3 shows obtained results from 32 Bits Multipliers with

Radix-4 Booth’s Algorithm. Results also include the Altera

Multiplier only for performance comparison.

Pipelined multipliers have high frequency, but needs more cycles to

produce results. Considering the need of successive multiplications,

results can be producer successively after the first product. This

fact is nullified when few operations are requested in a determined

period of time. Architectures without pipeline are slower, but

present result in one cycle. The of such implementation presents

advantages over the pipelined one if the number of operations do

not exceeds the pipeline time to produce the same number of

results. Figure 9 compares implementations with and without

pipeline showing the number of successive operation from which

using pipeline is advantageous.

Table 3. Frequency and chip area comparison.

Architect

ure

Wallace

Tree
Adder

Frequency

Chip

Area
Fmax

(Slow

1200mV

85C

Model)

Fmax

(Slow

1200mV

0C Model)

Developed

in this study

Without

Pipeline

Carry-

Propagate

Adder

37.54

MHz

41.72

MHz

2,468

LE

Carry Look

Ahead Adder

52.44

MHz

58.10

MHz

2,416

LE

Altera Adder
90.52

MHz

102.16

MHz

2,655

LE

With

Pipeline

Carry-

Propagate

Adder

56.82

MHz

64.02

MHz

2,524

LE

Carry Look

Ahead Adder

149.37

MHz

167.95

MHz

2,432

LE

Altera Adder
205.63

MHz

235.13

MHz

2,325

LE

Altera

Multiplier
- -

79.33

MHz

89.40

MHz

1,409

LE

Figure 9. Cycles representation of the multipliers applied

successive operations.

Table 4 shows the number of multiplications without pipeline

recommended until exceeds the pipelined time, representing

advantages regarding the number of results.

Table 4. Recommended successive operations number without

pipeline for each architecture.

Adder Type
Recommended Multiplications (Without

Pipeline)

Carry-Propagate Adder 6

Carry Look Ahead Adder 2

Altera Adder 3

The Table 5 show frequency and chip area of pipelined multipliers

with Radix-4 and Radix-16 Booth’s Algorithm.

Table 5. Performance data of 32-Bits Radix-4 and Radix-16

Multipliers.

Architecture
Booth's

Algorithm
Adder Frequency

Chip

Area

Multiplier with

Pipeline

Radix-4

Carry-

Propagate

Adder

64.02 MHz 2524 LE

Carry Look

Ahead Adder

167.95

MHz
2432 LE

Altera Adder
235.13

MHz
2325 LE

Radix-16

Carry-

Propagate

Adder

89.45 MHz 4614 LE

Carry Look

Ahead Adder

174.43

MHz
4717 LE

Altera Adder
255.98

MHz
4557 LE

Table 6 shows the total cycles of each multiplier affected by

Booth’s Algorithm approached in this study and its Wallace Tree

level amount affected by partial products reduction.

Table 6. Wallace Tree levels and necessary cycles of Radix-4

and Radix-16 Booth’s Algorithm Multipliers

 32-Bits Multiplier

 Wallace Tree levels Necessary Cycles

Radix-4 Booth Algorithm 3 6

Radix-16 Booth Algorithm 2 5

As shown in table 7, switch Radix-4 to Radix-16 improves

frequency, even for a little increment. However, chip area nearly

doubles due to increase complexity of the logic in Radix-16

codification.

4. CONCUSION
In this paper faster multipliers were implemented, performance

comparisons were presented and the impacts of the components

architecture to improve performance were discussed.

The results presented that pipelined multipliers are most effectives

when subjected to successive operations. Allowing high amount of

result outputs in less time. Also presented that multipliers without

pipeline have acceptable performance by cycle, being a feasible

solution to application that do not need successive operations.

As shown in comparisons, pipelined multipliers with alternatives

Booth’s Algorithm implementation have an improvement in

performance. However having as trade-off an impact in chip area

due the complexity of partial products generation.

In future works this study will assist deployment of high-speed

multipliers in many core processor architectures, aiming the

improvement and assess its performance in various applications.

Table 7. Radix-4 to Radix-16 Comparison (Pipelined

Multiplier).

Radix-4 to Radix-16 Comparison (Pipelined Multiplier).

Adder Type
Frequency

Gain

Frequency

Gain (%)

Chip Area

increase

Chip Area

increase

(%)

Carry-Propagate

Adder
25.43 MHz 39,72% 2090 LE 82,81%

Carry Look

Ahead Adder
6.48 MHz 3,86% 2285 LE 93,96%

Altera Adder 20.85 MHz 8,87% 2232 LE 96,00%

5. REFERENCES
[1] Collin, A. Andrew Booth's Computers at Birkbeck College.

Resurrection, Issue 5, Spring 1993. London: Computer

Conservation Society.

[2] Wallace, C. S. A suggestion for a fast multiplier, IEEE Trans.

on Electronic Comp. EC-13(1): 14-17 (1964)

[3] Surendran, E. K. L. and Anthony, P. R. Implementation of fast

multiplier using modified Radix-4 booth algorithm with

redundant binary adder for low energy applications. IEEE

2014 First International Conference on Computational

Systems and Communications, p.266-271, 2014.

[4] Pohane, G. and Sharma, S. Review Paper on High Speed

Parallel Multiplier – Accumulator (MAC) Based on Radix-4

Modified Booth Algorithm. International Journal of

Application or Innovation in Engineering & Management

(IJAIEM) vol. 3, pp. 86-95, Nov. 2014.

[5] Tonfat, J., Reis, R. Low Power 3-2 and 4-2 Adder

Compressors Implemented Using ASTRAN. IEEE Third

Latin American Symposium on Circuits and Systems

(LASCAS), 2012.

[6] Pang, K.F. Architectures for pipelined Wallace tree multiplier-

accumulators. IEEE International Conference on Computer

Design: VLSI in Computers and Processors, 1990.

[7] Weste, N. and Harris, D. CMOS VLSI Design: A Circuits and

Systems Perspective. Boston: Pearson Education, 2011. Ed.4,

p.429-261.

