
Veritrace: A Tool To Generate Trace Buffers For
Post-Silicon Debug

Danilo D. Almeida
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal
Florestal,Brasil

danilo.damiao@ufv.br

Fredy A. M. Alves
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal
Florestal,Brasil

fredy.alves@ufv.br

José Augusto M. Nacif
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal
Florestal,Brasil
jnacif@ufv.br

Abstract—In the semiconductor industry, the integrated circuit
verification process complexity is proportional to the circuit com-
plexity. For complex designs, pre-silicion verification techniques
cannot detect all errors. Post-silicon techniques use specific mod-
ules connected to the design under debug to detect functional and
structural failures by monitoring the circuit internal signals while
executing real applications, under real clock speed. The trace-
buffer technique stores signals over time from the design under
debug. This data is extracted and treated by an external software.
The objective of this paper is to present a tool to help in the
post-silicon debug process by automating the generation of trace-
buffers using the Verilog hardware description language. We
also analyze trace-buffer area overhead in different complexity
scenarios.

I. INTRODUCTION

The verification process in the semiconductor industry is the
longest phase in the development cycle of an integrated circuit.
This stage is responsible for 35% of the total development
time [1]. The use of techniques capable of detecting and
informing when an error occurs in an acceptable time limit is
a very important factor for a semiconductor industry to stay
on the market [4].

The verification of an integrated circuit is divided into two
phases: pre and post-silicon. In the pre-silicon verification the
hardware the developer has a large coverage of the internal
circuit behavior using techniques based on simulation,
formal verification, and emulation. Unfortunately, pre-silicon
verification is too slow when compared to the circuit running
at real clock speed [3].

Post-silicon verification is performed after the circuit
manufacturing process. The objective is to detect design
functional and/or structural failures not identified in the
pre-silicon and manufacturing test phases. This verification
phase uses a design for debug (DFD) architecture connected
to the circuit under debug (CUD), allowing the detection
and registration of error scenarios by storing internal signals
values while executing real applications at full clock speed.

The circuit area overhead caused by the DFD grows
with the number of internal signals being monitored. The

use of hybrid techniques presents better results for in-chip
observability. An example of this scenario is the use of the
scan-chains with the trace-buffer technique. The Scan-chain
method makes possible to observe a big set of internal circuit
signals. The main drawback of this technique is the need to
halt the system in order to dump the scan values [7].

The trace-buffer method stores data from a limited number
of internal signals during in-system debug in order to monitor
their behavior over time at real clock speed [9]. It is possible
to extract and treat this data through an external software.

In this paper we preset Veritrace (Verilog Trace Buffer),
a tool to generate trace-buffer modules in Verilog hardware
description language. The generated modules are ready
to be integrated in the design under debug in order to
automate the post-silicon verification process. This paper is
organized as follows. The post-silicon architecture and the
trace buffer module are presented in Section II. Related work
are presented in Section III. The Veritrace architecture is
presented in section IV. We present results in Section V. We
finally conclude and discuss future work in Section VI.

II. BACKGROUND

In this Section we present a general overview of the
Design for Debug used for the post-silicon validation and its
internal components. Moreover, we present a more detailed
explanation about how the trace-buffer works.

1) Design for Debug(DFD): The DFD is a module used for
the post-silicon debug embedded to the design under debug
(DUD). It is responsible for capturing groups of signals from
the DUD and storing those signals in real-time at full clock
speed. The main limitation in the post-silicon verification
phase is the restricted observability of the circuit internal
signals behavior. This occurs due to the area overhead in the
integrated circuit for the DFD. Figure 1 shows the DUD and
the DFD embedded to it. The DFD is divided into three parts:
Interconnection Network, Trigger Logic and Trace Buffer. The



interconnection Network is responsible for tapping a group
of signals from the DUD and connecting a subset of those
signals to the trace buffer. The Trigger Logic is responsible for
detecting an error in the DUD and routing the Interconnection
Network to connect the group of signals to the trace buffer
related to the error. The trace buffer is a module responsible for
storing the signal samples received from the interconnection
network, it is limited by two parameters: the buffer width and
depth. The first one limit the number of signals which can be
stored at each clock cycle, the second one limits the number
of times a signal sample can be stored [7]. The multiplication
of those parameters define the buffer size.

Fig. 1. Internal structure of a DFD module

2) Trace-Buffer Module: The trace buffer has two states:
the write and the read state. The initial state is the write state.
Figure ?? shows the write pointer (WP) and read pointer
(RP) for one signal connected to the trace buffer. At every
clock cycle, a signal sample is stored on the memory position
indicated by the WP and it moves to the next position. When
the WP reaches the buffer depth and a sample is received, it
returns to the first position and the buffer changes to a read
state. On this state, all of the memory positions for that signal
have to be consumed. At each read, the RP moves one memory
position ahead and when it reaches the buffer depth and one
read happens, it returns to the beginning and the buffer goes
back to the write state, closing the buffer write/read cyclic
behavior. On Figure 2, the coloured squares represent stored
signal samples and the white ones, consumed or free memory
positions.

When the buffer is full, the trace-buffer send a signal to
the serialize module to start the read process. The data read
from trace buffer is transferred from the buffer to a computer
using the RS-232 protocol where a software could be able to
receive an treat this data. After the read cycle is complete,
the trace buffer restart all pointers to the initial position and
it return to the write state to restart the signal sample capture
process. Figure 3 represents the communication between the
trace-buffer module and the PC through the Serialize module.

III. RELATED WORK

A hybrid memory that works like a data-cache reducing
the final overhead generated by the trace-buffer is proposed

Fig. 2. Example of a FIFO buffer:
a) Memory in Initial write state.
b) Memory after one write cycle.
c) Memory after two write cycles.
d) Memory after three write cycles
and one read cycle, transition from write to read state.

Fig. 3. The block diagram of the communication module

in [6]. The use of a hybrid method using scan-chains in order
to expand the circuit observability and trace-buffers to store
this signals to avoid chip halting in the execution process is
proposed in [5]. A study of selective signal capture in suspect
clock cycles with the objective of expanding the observation
window is proposed in [9].
The results are given in terms of a hybrid data cache miss
rate, the data acquired during the post-silicon debug process
and the expansion in the observation window. In this work,
we propose to present the results in terms of area overhead,
in order to evaluate the trade-off between the quantity of
monitored signals and the extra area cost caused by the DFD.

IV. VERITRACE STRUCTURE

The software was developed in the C Language, it supports
any size of trace buffer. This tool provides for the hardware
developer a way to accelerate and automatize the process of
choosing the best size of trace buffer for its design.

A. Trace-Buffer Generate Process

The process of generating a trace-buffer module requires
two arguments: the buffer width and size. The first
argument consist in the number of traced signals from



the interconnection network which connects to the trace
buffer. The second one is the number of traced signals
samples stored after many clock cycles. Veritrace generates
all design files used by the trace buffer in the verilog hardware
description language and reports the total size of the memory
in bytes. Figure 4 presents the trace-buffer generation process
using Veritrace.

Fig. 4. Fluxogram of a trace-buffer 8x256 generation

B. Trace-Buffer Interface

The trace-buffer Verilog interface consists in a synchronizer
input signal named clk, a input signal to set all pointers to
the buffer initial position named reset, a data input signal
to receive the data from the interconnection network named
datain, a data output signal to send the stored data to the
serialize module named dataout and a signal to initialize the
transfer of all stored data named pause. Figure 5 presents a
simulation of a trace-buffer module of 8 width and 8 depth.

Fig. 5. The buffer write and read in the post-edge of clk. When the trace
buffer is full, all data stored is transferred using the dataout pin by setting
pause.

V. RESULTS

We conducted the experiments by generating four trace
buffers with fixed width 25 and with depths 8, 16, 64 and
128. We inserted these trace buffers into a open source Verilog
project. MIPS 32 Release 1 [2]. The synthesis has been made
using the free synthesis tool Yosys [8] and the area for the
designs is presented in number of ports. Table 1 presents the
number of ports for different trace buffer sizes separated from
MIPS.

TABLE I
NECESSARY PORTS FOR BUILD A TRACE BUFFER

Width Depth Ports
32 8 898
32 16 1704
32 64 6413
32 128 12652
6 32 744
16 128 6489

To calculate the area overhead caused by the DFD, we
developed 4 different designs, each one has a mux-tree in-
terconnection network which outputs 25 signals connected to
a trace buffer, this DFD is embedded on the MIPS 32, each
design has a buffer with different depths, those being 8, 16,
64 and 128. The interconnection network used in the synthesis
presents a fixed separated value of 726 ports. The trace buffers
utilized in this experiment present a fixed width equal to the
interconnection network output. Figure 6 presents the number
of used ports by the MIPS 32 design without the DFD and with
the interconnection network and the trace buffer with different
depths.

Fig. 6. Number of used ports with and without DFD

Table II presents the overhead when the DFD with different
buffer sizes is embedded to the MIPS project.

The overhead in the MIPS project had an almost linear
growth, the design with the 25x8 buffer size presents the
lowest overhead with 9,4%. We cause that depths above 128
cause a final overhead greater than 50%, which may be a too



TABLE II
OVERHEAD IN THE ORIGINAL PROJECT

Project/Size 25x8 25x16 25x64 25x128
Mips 32 9.4% 12.3% 25.78% 43.85%

high cost for the circuit design.

This result demonstrates that the choice of the trace
buffer size impact significantly on the final project cost. It is
important to be able to study the tradeoff of different sizes of
buffers, the trade off will be acceptable or not depending on
the need for observability.

VI. CONCLUSION AND FUTURE WORK

We have presented a tool to assist hardware developers on
the post-silicon verification phase by automating the process
of trace buffer generation of any size. Our results show the
importance of being able to try different sizes of buffers to
find the optimal one. For future work we intent to add the
serialize module in the final trace-buffer structure, with this
module, the extraction and treatment of failures occurred in
the process of post-silicon verification becomes possible with
an external software.

ACKNOWLEDGEMENT

We would like to thank CAPES, CNPq, FAPEMIG and UFV
for the financial support.

REFERENCES

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller. A reconfigurable design-for-debug infrastructure for socs. In
Design Automation Conference, 2006 43rd ACM/IEEE, pages 7–12, 2006.

[2] G. Ayers. Mips32 release 1, 2014.
[3] A. Gomes, F. Alves, R. Ferreira, and J. Augusto M.Nacif. Vericonn: a

tool to generate efficient interconnection networks for post-silicon debug.
In Test Symposium (LATS), 2015 16th Latin-American, pages 1–6, March
2015.

[4] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang. Visibility enhancement
for silicon debug. In Proceedings of the 43rd annual Design Automation
Conference, pages 13–18. ACM, 2006.

[5] H. Ko and N. Nicolici. Combining scan and trace buffers for enhancing
real-time observability in post-silicon debugging. In Test Symposium
(ETS), 2010 15th IEEE European, pages 62–67, May 2010.

[6] C.-H. Lai, Y.-C. Yang, and I.-J. Huang. A versatile data cache for
trace buffer support. Circuits and Systems I: Regular Papers, IEEE
Transactions on, 61(11):3145–3154, Nov 2014.

[7] S. Prabhakar and M. Hsiao. Using non-trivial logic implications for trace
buffer-based silicon debug. In Asian Test Symposium, 2009. ATS ’09.,
pages 131–136, Nov 2009.

[8] C. Wolf. Yosys open synthesis suite, 2014.
[9] J.-S. Yang and N. Touba. Expanding trace buffer observation window

for in-system silicon debug through selective capture. In VLSI Test
Symposium, 2008. VTS 2008. 26th IEEE, pages 345–351, April 2008.


