Design and Implementation in VHDL of RPU
components of IPNoSys architecture

José Dijon de Oliveira Neto and Silvio Roberto Fernandes de Aratijo
Department of Exact Science and Natural (DCEN)
Rural Federal University of the Semi-Arid (UFERSA)
BR 110, Km 47 — CEP 59.625-900 — Mossor6 — RN — Brazil
E-mails: jdoneto@hotmail.com, silvio@ufersa.edu.br

Abstract—This paper aims to present an implementation of
simplified version of the main IPNoSys architecture component.
Such implementation uses VHDL and a methodology to design,
implementation and testing. The first functionality results of
components integrated and simulated confirm the efficiency of
the methodology.

I. INTRODUCTION

The computer architectures have evolved from models with
a single central processing unit (CPU) for which one with
organization optimized or parallelism exploration. models with
components or better organization replication which can be
applied parallel scanning techniques. With the advent of the
solutions, combined with the increased integration capabilities
in silicon wafers, it was possible to build multiprocessor sys-
tems within a single chip, also called MPSoC (Multiprocessor
System-On-Chip). The main interconnection mechanism for
this type of system are the NoC (Network-on-Chip) [1].

Based on the characteristics of the NoC, arises IPNoSys
(Integrated Processing NoC System) [2], which combines
communication and processing on the same infrastructure. It
is a general purpose architecture that presents a significant
reduction in terms of runtime through parallelism using mul-
tithreading.

IPNoSys was originally developed in SystemC [3] with
cycle accuracy for all architecture components. However, some
results may not be obtained with the current implementation,
such as theoretical maximum operation frequency; chip area;
and the total power dissipation. Therefore, the aim of this work
is related to the construction of a model for synthesis on FPGA
(Field-programmable Gate Array).

This article is organized as follows: section II shows the
general characteristics of IPNoSys, the programming model
and tools available; Section III addresses on the design
methodology, showing the components designed and imple-
mented this work and their testing; Section IV displays the
simulation results and the software and the device used to
achieve these results; Finally, following the conclusions, future
work and references used.

II. IPNOSYS PLATFORM

IPNoSys (Figure 1) is a general purpose processor with
unconventional architecture that take advantage of infrastruc-
ture and features from network-on-chip to favoring parallel
communication and processing. Such architecture presents a

model of computation directed to packages, which connects
the processing and communication, once the programs are
described on a specific packet format. The architecture is
formed by a network of RPU (Routing and Processing Unit)
with a MAU (Memory Access Unit) in each corner. The MAUSs
load and store data, as well as inject packets and execute
syncronization instructions. The RPUs are responsible to route
packets and execute logic and arithmetic instructions. It also
has an input and output system based on DMA (Direct Memory
Access). It has the following characteristics: topology NoC
Square 2D grid; It uses at least two virtual channels; rout-
ing XY modified; switching combining VCT and wormhole;
control credit-based flow; distributed arbitration; and storage
at the entrance. For more information, see [2].

Fig. 1.

IPNoSys architecture [2]

One of the great advantages of IPNoSys system is its
parallel computing power, presented in the form of packages
of pipeline injected by the same MAU and the simultaneous
injection of packets across different MAUs (real parallelism).
It is possible to exploit parallelism in instruction level (ILP)
or multithreading (TLP). The ILP parallelism is to verify the
data dependency graph and include instruction sequences with
addiction in the same package and independent instructions
in parallel packages. While multithreading parallelism in IP-
NoSys, is to divide tasks or snippets of code in independent
packages that can be injected alongside the four existing
MAUs, mainly using the technique of loop unrolling [4]. In
[5] is shown that the exploitation of parallelism using multi-
threading causes a reduction in the relatively more significantly
runtime that ILP exploitation. In the case of implementation
of DCT - 2D (Two Dimensional Discrete Cosine Transform),
the performance in IPNoSys is 3.7 times lower compared to a
conventional MPSoC [2].

IPNoSys afford programming support through the symbolic
language called PDL (Package Description Language), an
assembler and a simulation environment. The programming
model is to describe the applications/programs across one or
more packets, which are injected and executed in the system
in the order of dependence of data between computations that
each package is [6]. Programs written in PDL are submitted
to the assembler that is responsible for creating the equivalent
object code. This object code is used as input by the SystemC
simulator in implementing programs in MAUs and RPUs.
During the simulation, multiple results are generated and
stored in a text file, including: application runtime; memory
required; information about each package; average system
utilization; computation time, transmission and idle time each
RPU; and total power dissipated by buffers and architecture
during the execution of the application.

III. DESIGN AND IMPLEMENTATION IN VHDL

For the design and implementation of an architecture it
is necessary use an efficient methodology. According to [7],
the methodology of an architecture project basically involves
the following steps: to relate characteristics of the target
processor, describe the micro-programs using flowcharts, data
path design, description of the state machine, the hardware
description in HDL and test processor through simulation.

Following this methodology, it was started the RPU im-
plementation, where each component was divided into two
parts: the control unit and data path. The data path of the
project is a component of the combinational logic using a top
down approach in order to specify all subcomponents. The
description of the control unit behavior is to build a finite state
machine (FSM). Through their states, this FSM describes what
actions will be taken and the time that they should be executed,
so that synchronize the individual operations performed by
components.

The architecture of the RPU consists of: buffers the inputs,
one crossbar, arbiters in outputs, one ALU (Arithmetic Logic
Unit) and SU (Synchronization Unit) as shown in Figure 2. In
[8] you can get a more detailed description and design of all
internal components of the RPU, except the arbiter.

Basically, the arbiter has two functions: to transmit words
of a packet and request the execution of a instruction, in
addition to the traditional function to solve disputes by the
same output. For this, the arbiter removes the current instruc-
tion package (arithmetic type, logical or shift) and sends a
request to the ALU run. Once this request is accepted, the
ALU receives the instruction code and operands, performs the
computation and returns the result to the arbiter. The result is
saved in the buffer results (Figure 3), in address determined
the instruction, and marked as valid. Before transmitting, the
arbiter checks the availability of transmission channels in
the destination buffers in the next RPU and, if possible, an
exclusive channel is maintained until it is passed the ultimate
package before stored in the input buffer. During transmission,
a counter is incremented every word sent and used to check if
you have any valid data on the results buffer to be transmitted.
If the word is then transmitted by the arbiter and marked as
invalid the results buffer. Otherwise, the arbiter gives the word
that is the Input Buffer. Because of the complexity and space
issues, the arbiter’s drawing will be omitted.

L2 1% iy
eyl & —
e
B RPU
Data Path
Arbiter North

— I RPU North ‘ RPU
.Data Path Data Path
[T West East

BuTTer;
Local ’_{

Arbiter
East

rbiter| |

ut_East P
T

{]»\zahdbauom West—¢ West R
, -AvailableOut_Easth
#0uaou west— iep
_4 su F ﬁ:w\P
Arbiter
RPU South
Data Path
Fig. 2. Abstract version RPU

Buffer Results

——clk—4>
—rst—1] < g
1) -
2 |
+—Datain—»] s [Register 2} DataOutn74
! e t—Valid—/»

dd

-—WEDat§174

.—wmag%

O—Read#»

%Write%
1

Fig. 3. Buffer Results

Figure 4 illustrates the components that belong to the
purpose of this article, i.e.: one Buffer (input), an ALU, a
Buffer Results and Arbiter. After the development of each unit
or component, it is necessary to incorporate such structures in
an entity, in this case, the RPU. In this present version some
RPU functions are not availables, such as the routing of the
package, the creation of control package and the treatment of
simultaneous requests the ALU and SU. However, it presents
the functions: store the words received the package, execute a
statement, save and read the result of computing and transmit
the packet.

The last step of this methodology is the functional simula-
tion or temporal where you must use different levels of testing
to ensure that the entity is operating as expected. For this, at
first, unit tests are applied to a single unit system, which does
not possess external dependencies, to test it alone (considering
all possible scenarios). Figure 5 illustrates a generated script
to automate unit tests the ALU. Signs AN, BN, RN and ON
mean, respectively, the Data A, Data B, Operation and North
ALU port Results for a sum. The Assert and Report are used

——clk A RPU
1

——rst-—Cs!

1

Arbiter

Buffer
Results

DataOut—/»
n

Datain—"—{ lidDataOut—>
1

n
+——ValidDatain—/—" |

{ [

lgp

Fig. 4. The simplified version of RPU project

to notify illegal conditions (very useful when the code pass
through maintenance), that is, when the test fails.

s5_ 80N <= std_logic_vectorlto_sigaed{l, LEN_WIDTH));

5_ON <= std_logic_wvectorito_signed(l, LEN_MWIDTH));

s5_0ON <= std_logic_wector(Co_uns iganed (00, LEN_OFERATION));
WOIT EOR period;

ALSSERT s_BN = CTRL_OPERAND

L std_logic_wvectocito_uasigaed(?, LEN_OPERAND))
REFORT "T1l Eailed"
SEWERITY Eccoc;

Fig. 5. Script excerpt in ModelSim for ALU

Finally, when two dependent parts of the system pass
through successfully unit tests, then an integration test must
be prepared and implemented to verify proper synchronization
between the components.

IV. RESULTS

To implement the architecture of Figure 4 we used the
Quartus IT Web Edition 14.0 [9]. In this article, the FPGA
device chosen as a target for synthesis was the family
EPACE115F29I8L Cyclone IV E manufacturer Altera.

The description in VHDL simulation was performed using
the ModelSim-Altera Starter Edition software (can be used
independently of the Quartus), by running scripts to automate
the testing process.

The Table I contains the results obtained by compiling, for
chip area, maximum operating frequency and power dissipa-
tion of the components described.

TABLE 1. RESULTS OBTAINED WITH THE DESCRIPTION OF THE
HARDWARE
. Maximum Operating Power Dissipation
Component Area on Chip (LE) Frequency (MHz) (mW)
Buffer 430 248.63 158.66
Buffer Results 1,392 965.25 157.99
ALU 2,615 - 214.58
Arbiter 1,996 97.88 207.33
RPU 4,182 91.02 154.41

In the simulation images the results are presented in
hexadecimal. Initially, the word will only be inserted into the
Input Buffer if it is valid. The first three words of Figure 6
correspond to header and contains information on the type of
package, the number of instructions and the pointer (number of
words processed along the route of the package, indicating the
next instruction to be executed). The next words are instruction
type and operand, to be performed in the ALU and the address
where it should be saved the result of the computation. Soon
after, the operands are inserted. At this time, the Arbiter calls

ALU that add the operands (2 and 1) and enter the result in
position 4, from the first instruction (starting from 0).

Fig. 6. Insert the three header words (red), an instruction (yellow) and two
operands (blue) in the Buffer

500 ns

Fig. 7. Insert another instruction (yellow), operating (blue) and packet end
word (green) in the Buffer and sending the header three words (red)

Fig. 8. Sending the remaining instruction (yellow), insertion loss (blue),
sending the remaining operands (blue) and the packet end word (green)

V. CONCLUSION

By adopting this design methodology, it was possible
to obtain faster and more accurate implementations. Also
applies to the benchmark methodology, as test cases include
virtually all possibilities, are executed quickly and accurately
and present the test results immediately.

Moreover, the implementation of RPU in VHDL compo-
nents allowed it to be obtained results of the area, frequency
and power of each entity (unlike in SystemC implementation,
where only the buffer has a calculated power).

According to simulation, it can be concluded that for an
instruction with two operands, the processing time takes 7
clock cycles, and the processing in ALU 1 cycle lasted for
a sum. Regarding the transmission time, the packet begins to
be transmitted in the next cycle of the computation.

As future work will be done to integrate the current
implementation with the SU, treatment instructions and the
other types of packages, the addition of simultaneous requests
and routing, and the development of other components of
IPNoSys. Finally, the assembler will be adapted to generate
memory initialization file (.mif) required to implement a pro-
gram directly to the FPGA.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

REFERENCES

Benini, L. and Micheli, G. D. (2002) Networks on Chips: A New SoC
Paradigm. IEEE Computer Society Press. 35: p.70-78.

Aratjo, S. R. F. (2012) Projeto de Sistemas Integrados de Propdsito
Geral Baseados em Redes em Chip — Expandindo as Funcionalidades
dos Roteadores para Execugdo de Operagoes: A plataforma IPNoSys.
191 f. Tese (Doutorado em Sistema e Computacdo) — Departamento de
Informdtica e Matemadtica Aplicada. Universidade Federal do Rio Grande
do Norte. Natal.

Accellera Systems Initiative. ~ SystemC. Disponivel em:
<http://www.accellera.org/downloads/standards/systemc>. Acesso
em Out. 2013.

Pereira, M. M. et al. (2008) Using traditional loop unrolling to fit
application on a new hybrid reconfigurable architecture. In: 23rd Annual
ACM Symposium o Applied Computing. Fortaleza.

Fernandes, S. et al. (2009) Processing while routing: a network-on-chip-
based parallel system. In: IET Computers & Digital Techniques, v.3, n.
S, p. 525-538. Disponivel em: <http://link.aip.org/link/?CDT/3/525/1>
Fernandes, S.; Silva, I. S.; Kreutz, M. (2010) Packet-driven General
Purpose Instruction Execution on Communication-based Architecture.
In: JICS — Journal of Integrated Circuits and Systems, v. 5, p. 14. ISSN
1807-1953.

Costa, R. V et al. (2012) SICXE: Improving Experience with Didactic
Processors. Simpésio Brasileiro de Engenharia de Sistemas Computa-
cionais (SBESC). Natal.

Neto, J. and Fernandes, S. (2013). Metodologia de projeto para descrigdo
da arquitetura ipnosys em vhdl. In EPOCA 2013, Mossor6/RN.

Altera Measurable Advantage. Quartus Web Edition
and ModelSim-Altera Starter Edition. Disponivel em:
<https://www.altera.com/products/design-software/fpga-design/quartus-
ii/quartus-ii-web-edition.html>. Acesso em May. 2015.

