Using an Analog Netlist Generation Tool to
Evaluate a Mixed Circuit Verification Framework

Danilo D. Almeida', Abner L. P. Marciano?, and José Augusto M. Nacif",
nstituto de Ciéncias Exatas e Tecnoldgicas, Campus UFV-Florestal, Universidade Federal de Vicosa, Brazil
2Cadence Design Systems
{danilo.damiao, jnacif}@ufv.br, abner@cadence.com

Abstract—The growing demand for powerful integrated cir-
cuits in terms of power consumption and processing, creates
a big obstacle for hardware verification engineers to ensure
Integrated Circuit (IC) quality. Actually, IC verification consumes
more than half of the development cycle. And with the growing
complexity, the verification also increases. When we consider
analog blocks in mixed-signal ICs we have an even more
challenging verification process. Unfortunately, the environments
for mixed-signal verification are inefficient because it is not
possible to generate realistic analog outputs to the digital blocks
inputs during simulation. This work evaluates ALIAS, a tool that
generates digital abstractions of analog circuits for verification.
To evaluate ALIAS efficiency we have created an ADC and DAC
netlist tool generator, to perform verification in different mixed-
signal scenarios and circuit configurations.

Index Terms—Verification, Analog Circuit Abstraction, Con-
verter, ALIAS, ADC, DAC.

I. INTRODUCTION

The growing demand for performance and reduced power
consumption on integrated circuits lead to more and more
complex systems. Actually, the Integrated circuit (IC) verifi-
cation takes more than half of the development cycle [1], and
with the expansion in complexity the verification time also
increases. When considering analog and mixed signal IC’s the
verification problem is even more challenging.

When compared to digital circuits, verifying analog circuits
suffers from performance issues and the lack of automated
flows. However, when verifying a system at digital levels,
engineers tend to focus the verification effort at the digital
portions of the design-under-verification (DUV). Therein, such
analog components are either ignored or replaced with over-
simplified versions. On overlooking such components at digital
levels, the overall IC quality is compromised. Abner et. al [2]
presented ALIAS, a tool that creates precise digitized versions
of analog circuits. On this work we present a series of case
studies directed on evaluating ALIAS’ efficiency. To that end,
we have created a tool to generate analog-to-digital (ADC)
and digital-to-analog converters (DAC) with selective precision
marks.

This paper is organized as follows. We present ALIAS and
selected circuits in Section II, followed by a review on related
work, that we present in Section III. Methodology, ADC/DAC
circuit generator and routing algorithms are presented in
Section IV. Sections V and VI present results and future work,
respectively.

II. BACKGROUND

In this Section we present an overview of ALIAS as well
common mixed-signal circuits.

A. ALIAS

The ALIAS creates digital approximations of analog cir-
cuits based in observed circuit behavior [2]. As depicted by
Figure 1, the process of creating analog abstraction starts
with data acquisition, which is the waveform generated by
the analog circuit. Reading from SPICE-based simulations [3]
data, ALIAS discretizes continuous analog points based on
a parsing specification which goes from global settings, like
the interval into which the waveform should be sampled, to
local settings, as how each signal should be sampled. Figure 2
illustrates wave sampling process.

Netlist

Circuit
Waveform

Fig. 1: An Example of ALIAS use flow.

The next step is on understanding the analog data, now in
digital domain, which has been made based on the observation
that electronic systems usually start at an idle state, until
they is signaled to perform an action, to then perform it and
settle back in an idle state. ALIAS uses this idea to transform
an analog behavior on an abstract model in form of Verilog
Code or a DOT file. Figure 1 illustrates the steps to create
a digital abstraction using ALIAS, starting in analog netlist
input ending in the digitized abstraction.

B. Mixed-Signal Circuits

The selected circuits convert digital signals in analog and
vice-versa. They are used for creating an interface between real
and digital world and are used in various groups of electronic

Time steps

Discrete

ranges Voltage
A

A

1

undefined

(x)
0

Sampled
values

offset

Fig. 2: Sampling wave process [2].

products used daily (e.g. Cellphones, Sound Mixers, Radio
Controllers). Figure 3 illustrates the interface created for this
type of electronic circuit.

Real World
Input Signal ! !!' Output Signal

Digital/Analog
Circuit

Analog/Digital
Circuit

Signal Digitized

ur

Digital Circuit Output

i

Digital Circuit

Fig. 3: Mixed Signal Circuit.

1) DAC R/2R: On this case study we target a R/2R DAC,
formed by a simple resistor network and an analog comparator.

The output can be seen as the sum of each bit voltage,
and value assumed for each bit is represented for expression
Vour = QL where the n represents the bit number and V,
is the maximum voltage value. In this case, V. value is still
between 0V < V.. < 5V. Figure 4 presents a 3-bit DAC.

Digital Input
02
0l »>—

o0 »

Analog Output

2R- 2R

Fig. 4: 3-bit DAC circuit.

—»

2) ADC Flash: An ADC Flash converts a voltage value
into a digital signal. It is built using a voltage comparator and
XOR logic gates for each defined value. The flash architecture
is one of the fastest among ADC architectures, but is it also
more complex in terms of construction. A 2-bit Flash ADC
can be built from four resistors, three comparators, and three
xor gates. Generalizing, in order to build a N-bit ADC flash
circuit we need 2" — 1 comparators and xor gates, and 2"
resistors [4]. Figure 5 illustrates a 2-bit Flash ADC.

Analog Input
T >
. Digital Output
>
v K2

Fig. 5: 2-bit Flash ADC circuit.

III. RELATED WORK

In this section we present work related to analog verification
and benchmark circuits. Harjani ef al. [5] present a framework
for analog synthesis and build common analog circuit blocks.
Unfortunately this system is not publicly available.

Kaminska et al. [6] present a benchmark tool that allows
engineers and researchers to perform analog simulations. The
available benchmarks include analog circuit netlist described
in HSPICE format and information about their type, descrip-
tion and behavior. This system is not publicly available and
the tool does not allow the creation of circuits in arbitrary
sizes.

Kondagunturi et al. [7] present an extension of [6]. The
authors include a set of fault models to evaluate and validate
different types of analog and mixed-signal. This tool is a
good benchmark framework to test the efficiency of analog
validation methodologies, but is not publicly available, and
the benchmark tool is very limited in terms of size and type
of circuits.

IV. METHODOLOGY

In this section we describe tools used and created for
simulating the circuits described in Section II. Moreover, we
generate circuit netlists while describing more important parts
in our implementation.

A. ADC and DAC Netlist Generator

In order to represent circuits used in this work, we create
a tool to generate ADC or DAC circuits or arbitrary sizes.
This tool creates a netlist representation to be used by SPICE
simulators and generates waveform stimuli using the Piecewise
Linear (PWL) [8] format. The netlist is based in the SPICE

model and output file is a (.cir) file containing the circuit and
respective behavior.

Algorithm 1 connects two input signals of comparator
in the resistor output node. Algorithm 2 is responsible for
connecting the generated outputs for each xor logic gate.

Algorithm 1 Node Connect Algorithm
1: procedure INSTANTIATES AND CONNECTS COMPARA-

TORS
2: i < Bitss
3: x + pow(2,i) — 1
4: Comp + 0
5: while Comp < x do
6: CompEst[comp|.inputl < resis[comp].output
7: CompEst[comp].input2 < AnalogInput
8: CompEst[comp].output < Emptynode
9: Comp < Comp + 1
10: Comp <+ EmptNode + 1

Algorithm 2 Output Connection Algorithm

1: procedure CONNECTS OUTPUT
2 7«0

3 i < Bits

4: x + pow(2,i) — 1

5: Xor +0

6 Outputs < Bits

7 while Xor < x do

8 shift < Xor

9 while Shift > 0 do
10: if Shift % 2 > 0 then
11: OutputEstr[j] < XorEstr[Xor|.output
12: Shift « Shift >> 1
13: j—i+1
14: 70
15: Xor < Xor+1

B. SPICE Simulator

LTspice IV is a SPICE simulator, schematic capture and
waveform viewer [9]. It is used to provide ALIAS input
and compare the generated results on analog and digital
environments. Figure 6 presents LTspice working diagram.
LTSpice input is the analog circuit file and the output is a
SPICE simulation result and metrics about the circuit (e.g.,
simulation time, circuit simplifications).

V. RESULTS

In this section, we have used the tool described in Section IV
to generate the ADC and DAC with different sizes. We have
chosen the LTSPICE [9] to perform analog simulation and
Icarus Verilog [10] to run digital simulation. The simulation
has been conducted on an Intel Core TM 17-4770 @3.4GHz
with 16GB of main memory, and results are presented in terms
of time (seconds).

Input File (Analog Circuit File)

Transient
Analysis
Circuit
Simplifier

Output Files (Spice Simulation and Metrics)

LTspice ———|

Fig. 6: LTSpice work flow.

TABLE I: DAC: Analog x Digital environment.

VI Time (s
Circuit Size | ¢pjop I(Di)gital
6 Bits 1109 | 2257
8 Bits 5418 | 9.464
9 Bits 13.456 | 9.580

A. DAC 6, 8, 9 bits

We have generated DAC circuits of 6, 8, 9 bits. Table I
presents simulation time using three DAC circuits with differ-
ent number of bits using an increasing digital input ranging
from 0 to 2" — 1 where n is the number of bits. Figure 7
shows the elapsed time to simulate a DAC circuit using
LTSpice and Icarus with the ALIAS abstraction. For this
low complexity circuits the running times do not present
considerable variations.

B. ADC 5, 8, 9 bits

We have used our tool to generate ADC circuits of 5, 8, and
9 bits. The waveform generation is defined in the number of
reachable states to each circuit, for example: a 9 bits ADC is
able to reach the interval 0 < x < 512. For each state we have
the following equation: V(n) = 37,=¢ ¢ where V(n) is the
voltage value, n state number, o the maximum voltage, and
¢ the last state reached by ADC circuit. Using as example
a 5 bits ADC, for reach state, we need a voltage variation
of 0.01953125V for each state. Table II presents simulation
time ADC using three ADC circuits with different number of
bits using an increasing analog input ranging from 0V to 5V.
Figure 8 shows the time spent to simulate an ADC circuit
using LTSpice and Icarus with the ALIAS abstraction. When
we consider high complex analog circuits our methodology
presents faster results.

TABLE II: ADC: Analog x Digital environment.

e s Time (s
Circuit Size | ¢pjop ()Digital
5Bis 9514 9338
8 Bits 38,785.877 | 11.861
9 Bits 807,021,520 | 175.046

Time (s)

Time (s)

14

SPICE —@—

VI. CONCLUSION AND FUTURE WORK

Our results have demonstrated that digital abstractions of
analog circuits can significantly decrease the simulation time
during a mixed-signal verification process. Taking as example
the ADC circuits, the time spent to simulate 9-bit ADC circuits
is 1,300% higher when compared to an 8-bit ADC, depicting
an exponential growth when increasing the ADC resolution
by a single bit. The study presented in this work shows the
advantages of use ALIAS to validate mixed-signal circuits
while supplying realistic analog inputs to digital blocks. As
future work we will improve and include new features in our
tool in order to provide more circuits to test mixed-signal
verification environments.

ACKNOWLEDGMENTS

We would like to thank CAPES, CNPq, and FAPEMIG for
the financial support.

REFERENCES

[1] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1-6, June 2015.

[2] A. L. P. Marciano, “Alias: Analog circuit abstractions for digital systems
verification,” Master’s thesis, Federal University of Minas Gerais, apr
2015.

[3] L. W. Nagel and D. O. Pederson, SPICE: Simulation program with
integrated circuit emphasis. Electronics Research Laboratory, College
of Engineering, University of California, 1973.

[4] M. F. Wagdy and Q. Xie, “Comparative adc performance evaluation
using a new emulation model for flash adc architectures,” in Circuits
and Systems, 1994., Proceedings of the 37th Midwest Symposium on,
vol. 2, pp. 1159-1163 vol.2, Aug 1994.

[5] R. Harjani, A. Rutenbar, and L. R. Carley, “Oasys: A framework for
analog circuit synthesis,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 8, no. 12, pp. 1247-1266, 1989.

[6] B. Kaminska, K. Arabi, I. Bell, P. Goteti, J. L. Huertas, B. Kim,
A. Rueda, and M. Soma, “Analog and mixed-signal benchmark circuits-
first release,” in Test Conference, 1997. Proceedings., International,
pp. 183-190, Nov 1997.

[71 R. Kondagunturi, E. Bradley, K. Maggard, and C. Stroud, “Benchmark
circuits for analog and mixed-signal testing,” Master’s thesis, University

/' Digital -
///
/
12 / B
/
/
/
//
/
/
10 / i
% // x
/
/
/
8L / B
/
//
/
//
/
6L / |
/
4l |
2k X -
o
0.010~{0} 5.04107{5} 1.0¥10~{6} 1.5¥10~{6} 2,010~ {6}
Steps
Fig. 7: DAC simulation time.
1e+06
SPICE —@®
Digital -/
100000 | /A
[]
10000 |- 1
1000 |
X
100 - / 1
10} . X
1 '/7// 1 1 1 1
107{2} 107{3} 10~ {4} 10~{5} 10~{6}

Fig. 8: ADC simulation time.

Steps

[8]
[9]
[10]

of Kentucky, 1999.

J. F. Hudson, “Piecewise linear topology,” New York, 1969.
I. LTspice and D. Models, “Linear technology,” 2013.

S. Williams, “Icarus verilog,” 2006.

