
Automating Trace Buffer Post-Silicon Debug
Fredy Alves, Danilo D. Almeida, Vitor Hugo Pereira,

Ana Cláudia Costa and José Augusto M. Nacif
Instituto de Ciências Exatas e Tecnológicas, Campus UFV-Florestal, Universidade Federal de Viçosa, Brazil

{fredy.alves, danilo.damiao, vitor.h.pereira, ana.c.paraiso, jnacif}@ufv.br

Abstract—One of the most important stages of an integrated
circuit development cycle is the verification phase. Before the
integrated digital circuit large scale production, the pre-silicon
verification captures and fixes the project functional errors using
simulation and formal techniques. Unfortunatelly, some design
errors escape to first silicon and need to be identified and
corrected. This new phase is called post-silicon verification and
imposes signal observability restrictions preventing designer from
capturing and evaluating the signal values against time. We
propose PSi, the first open-source framework for post-silicon
debug algorithm experimentation. PSi features include: Verilog
RTL parsing, post-silicon debug infrastructure inclusion, and
online monitoring and validation. The customizable post-silicon
debug infrastructure is composed by interconnection network,
trace buffer, assertion triggering, and signal selection. These
modules can be extended in order to evaluate new verification
algorithms and architectures. We present area overhead of
circuits in which we have used PSi to generate post-silicon debug
infrastructure.

I. INTRODUCTION

Technological innovations in the manufacturing process of
digital integrated circuits result in transistor size reduction
allowing the inclusion of new features. At the same time, the
effort required to check and correct design errors is increased
due to the higher complexity of modern chips [15]. This stage
is called Verification being one of the most challenging during
integrated circuit development cycle. When a design error
escapes to silicon, the project is delayed and losses can reach
up to 93% [16].

Before the circuit manufacturing process, a set of methods
is used to capture and correct design errors. This pre-silicon
step consists of simulations, formal tests and emulations. The
most usual technique is the simulation [14], which allows the
analysis of circuit signal behavior over time. However, this
option may be impractical for all states due to the exponential
number of input stimulus generated in some situations [12],
[17]. In formal verification, mathematical proofs are used [8]
but, unfortunatelly, this technique is also impractical to be used
in complex systems which may contain billions of transistors,
such as the third generation of Intel processors Core.

In order to identify the root cause of design errors that
escaped to silicon, we use post-silicon debug techniques. In
this process, the operation of the integrated circuit is evaluated
using applications and real environments running at full clock
frequency. This process involves four steps [1]: a) detecting
the problem; b) reducing its location to a smaller region;
c) identifying the cause; d) fixing or ignoring it [10]. This
procedure has become essential and consumes on average,

35% of the circuit development cycle. In this case, the limited
observability is a challenging problem, preventing the designer
to capture and analyze the values of all circuit signals. In order
to overcome this limitation, post-silicon debug techniques
are used to make possible the observation of Circuit Under
Debug (CUD) internal signals behaviour. Post-silicon debug
techniques include scan chains and trace buffers [9].

Scan chains use a series of interconnected registers, flip-
flops or sequential elements. In this technique signal values are
serially extracted, and then the circuit error state is uncovered
and analyzed. However, the integrated circuit must be halted,
preventing signal continuous monitoring. In industry, the most
popular post-silicon debug technique is based on a trace buffer
to store internal signal values during the integrated circuit real-
time execution.

Although post-silicon debug techniques are broadly used
both in academia and industry, there is no open-source system
available to automate and implement post-silicon new algo-
rithms and architectures. Developing open-source systems is
a widely disseminated habit in Electronic Design Automation
(EDA) research community. Some examples of EDA open-
source systems are SIS (logic synthesis) [13], VIS (formal
verification) [4], and ABC [3] (sequential synthesis and veri-
fication).

In the paper we present PSi, the first open-source frame-
work for post-silicon debug algorithm experimentation. The
framework is composed by basic features such as Verilog
RTL parsing, post-silicon infrastructure inclusion, and online
monitoring and validation. In terms of automatic post-silicon
infrastructure generation PSi offers a set of pre-defined algo-
rithms and architectures that are easily extensible. These pre-
defined architectures and algorithms include MuxTree/Omega
interconnection network generation, arbitrary size trace buffer
generation, assertion triggering, and manual signal selection.

This paper is outlined as follows. Section II presents general
concepts related to trace buffer post-silicon debug. Section III
discusses related work. In Section IV we present the method-
ology and, finally, Section V shows the results and Section VI,
conclusion and future work.

II. BACKGROUND

The most relevant post-silicon verification problem is in-
ternal signal observability limitation. Some on-chip strategies
to overcome observability limitation include Design-for-Test
(DFT) and Design-for-Debug (DFD). Although adressing the
same problem, DFT and DFD have different objectives. While

DFT identifies manufacturing defects, DFD is focused on
design error localization. The most popular technique for DFT
is the scan chain [7]. The industry standard solution for DFD
is storing and analyzing the signal values on a trace buffer.

In this paper we consider DFD as the infrastructure used
for extracting and analyzing signal information for post-silicon
debug being responsible for capturing and storing groups of
signals in real-time at full clock speed. In remain of this
Section we discuss general concepts related to DFD. Figure 1
presents a trace buffer based DFD architecture. The Intercon-
nection Network module is responsible for selecting which
signals will be stored in the trace buffer memory module. The
Trigger Logic module monitors the circuit behavior and begins
capturing data when preset conditions are met. We discuss
those DFD modules in more detail in the next subsections.

Fig. 1: Internal DFD Structure.

A. Interconnection Network

Interconnection networks are programmable systems used
for communication between two components. In post-silicon
debug, interconnection networks are used to select a subset of
signals to be stored in the trace buffer being named asymmetric
because they have more inputs than outputs. Interconnection
networks and can be designed under diverse architecture types
and the most relevant characteristics for post-silicon debug are
blocking rate and area overhead. The blocking rate refers to the
set of possible signal combinations that can be observed at the
same time and area overhead is related to the integrated circuit
area dedicated to implement the interconnection network.

III. RELATED WORK

In this Section we present work related to post-silicon debug
architectures, algorithms, and tools. Several post-silicon debug
architectures have been proposed in recent years. Abramovici
et al. [1] presents a reconfigurable infrastructure for SoCs to
support post-silicon debug. This infrastructure is inserted at
RTL providing a debug platform that can be configured using
a JTAG port. The proposed system supports different debug
structures such as assertion checkers, transaction identifiers,
triggers, and event counters. This system is not publicly
available.

Park et al. [11] use the trace buffer for bug localization. In
this work on-chip recorders collect information about flows of
instructions, and what the instructions executed as they passed

through various design blocks. When a system failure occurs,
the recorded information is scanned out and analyzed offline
for bug localization. On [18], the authors use the trace buffer
data for capturing errors in spatial and temporal domains.
But even using trace buffer, the time of bug activation is
a challenging problem. Thus, various methods for bugs and
faults have been presented.

IV. METHODOLOGY

PSi is a system developed to help and speed up the post-
silicon debug phase. The tool provides to the user the possi-
bility of selecting wires from a design, in order to externalize
them and generate the interconnection network used to capture
the signals driven by these wires, and selecting assertions, to
use for trace buffer trigger. PSi uses the tools Vericonn [6] and
Veritrace [2] to generate the DFD. It uses Yosys in order to
generate a list of wires in a Verilog design and their respective
place on the project hierarchy and uses an assertion library to
include the selected assertions on the design. In this Section we
present PSi blocks: a) Front-end; b) Externalization process;
c) Debug Infrastructure.

A. Front-end

The front-end consists of a visual interface used by the
designer in order to specify the design top level file, select
the desired wires for analysis and configure DFD module. The
configuration consists on the type and features (such as input
and output size) of the interconnection network as well as the
trace buffer dimensions and the assertions to be used as trigger
of trace buffer. After configured, PSi starts the process of wire
parsing, creating a new Verilog design with the assertions and
all selected wires externalized in the top module, and with the
DFD connected to the wires. Figure 2 shows the new design
generated by PSi. With the new Verilog design, is possible
to analyze the system behavior during execution through the
serial interface. Figure 2 depicts the process of communication
between the design generated by the PSi and the computer.

B. Wire Extraction and DFD infrastructure generation exam-
ple

In order to extract and externalize the wires that compose
a design we use a Verilog lexical analyzer from the Yosys
synthesis tool. This process consists of five steps:

1) Yosys performs the Verilog code analysis and returns a
list of wires with their respective attributes and where
they are on the design hierarchy;

2) The tool generates the design modules hierarchy with
their respective wires;

3) After wire selection, the tool performs a recursive mod-
ification of the modules interfaces on the hierarchy in
order to create a path to the top module interface;

4) A new design containing all modules necessary for the
circuit debug is generated, including assertions.

5) A XML file containing all information about the trace
buffer structure is generated for the data extraction
process.

Fig. 2: PSi Execution Flow.

In order to externalize wires in deep modules, PSi creates a
path between the selected wire module and the top module by
modifying the intermediate modules interfaces. This process
starts in the module that is deeper in the hierarchy. PSi
generates an output for this wire connecting the selected wire
to this output, creating an new interface in the module. This
process is repeated in the upper modules finishing at the top
level module, when the internal wires can be accessed by the
DFD module.

C. Debug infrastructure

The debug structure is responsible to detect and store the
errors occurrence during the post-silicon debug. This module
consists in three parts:

1) Interconnection Network;
2) Trigger Logic;
3) Trace Buffer.

The interconnection network is responsible for selecting a
subgroup of wires from a larger set and connect them to a
trace buffer. The use of interconnection networks is necessary
in order to maximize the number of captured signals from a
design. The main reason for the use of these networks is the
fact that the trace buffer width will always be smaller than the
number of observed signals due to the area overhead caused
by the trace buffer.

The trigger logic is responsible for detecting errors during
debug process. This module uses assertions to monitor circuit
behavior. All selected assertions are connected on the trigger
logic. When an assertion is violated, the process of capturing
signals from interconnection network and storing at the trace
buffer starts. Figure 3 illustrates this process.

The trace buffer is a circular buffer memory responsible for
storing all errors occurred during the debug process.

Fig. 3: Assertion Trigger Logic.

V. RESULTS

To study the efficiency of the tool we generate a DFD to
a simplified MIPS processor. MIPS (Microprocessor without
Interlocked Pipeline Stages) is a RISC (Reduced Instruction
Set Computer) architecture that only do arithmetic and logic
operations between registers, requiring load/store instructions
to access data from memory. The version used allows logic
arithmetic, branch and load/store instructions.

To trigger logic we have selected 3 assertions, presented in
Table I:

1) Assertion 0 tracks if the control signal memRead is
different from signal memWrite, in other words there
is not memory read and memory write at the same time;

2) Assertion 1 tracks if the part of instruction correspond-
ing to the operator is 0 (R-Type instruction) and the
destination register is from the field rd from instruction
i.e. the control signal is generated correctly;

3) Assertion 3 tracks if one of the inputs of ALU, or both,
are greater than 0. The operator is ADD (ALUop == 2)
and the result of ALU is 0, testing if an error occured
in an add operation.

When one, or more, assertions fire, the trace buffer will start
storing data from the interconnection network.

There are three principal types of design bugs: logic,
algorithm and synchronization bugs [5]. Logic bugs consists
on incorrect logic in combinational circuits. Algorithm bugs
occur when an algorithm was not correctly implemented in the
design. Synchronization bugs are errors in the timing behavior
of a design. Using the first or the second assertion of the Table
I we can trigger a logic bug on signal control generation. With
the last assertion we have an arithmetic bug detection.

TABLE I: Assertions used in the design example.

ID Expression
0 assert_always(memRead != memWrite)
1 assert_always(instruction[31:26] == 0 && regDst)
2 assert_always((op1ALU>0 || op2ALU>0) && ALUop==2 && !zero)

In the Figure 4 we present the area of the new design for
two different interconnection networks (Mux Tree and Omega)
in three different sizes (32x8, 128x16 and 256x32) with a
trace buffer of fixed depth of 32 and width of 8, 16 and 32

respectively. The area is presented as the number of NAND
equivalent gates.

Fig. 4: Final Overhead caused by DfD.

The y-axis of Figure 4 represents the number of NAND
equivalent gates. The white bar represents the size of the
MIPS processor and the bars with patterns represent the size
including the DFD infrastructure.

Table II presents the new size of the MIPS processor with
the DFD and the respective overhead. All modules generated
presents overhead below 2%.

TABLE II: Area Overhead

Network Trace New Size Overhead
Mux_Tree-32x8 8x32 1245427 0.34%
Mux_Tree-128x16 16x32 1250304 0.73%
Mux_Tree-256x32 32x32 1257885 1.34%
Omega-32x8 8x32 1245691 0.36%
Omega-128x16 16x32 1251124 0.79%
Omega-256x32 32x32 1258167 1.36%

VI. CONCLUSION

We have proposed the PSi post-silicon debug tool. It pro-
vides the features to select a group of wires from a design
and connect them to a DFD module. We have also shown that
PSi is extensible and new funtions can be easily included.
The already implemented features are the generation of inter-
connection network and trace buffers in Verilog RTL code,
assertion based event trigger, and manual signal selection.

ACKNOWLEDGMENTS

We would like to thank CAPES, CNPq, and FAPEMIG for
the financial support.

REFERENCES

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller. A reconfigurable design-for-debug infrastructure for socs.
In 2006 43rd ACM/IEEE Design Automation Conference, pages 7–12,
2006.

[2] D. Almeida, F. A. M. Alves, and J. A. M. Nacif. Veritrace: A tool to
generate trace buffers for post-silicon debug. In 2015 Student Forum
(SFORUM), 2015.

[3] Robert Brayton and Alan Mishchenko. Computer Aided Verification:
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, chapter ABC: An Academic Industrial-Strength
Verification Tool, pages 24–40. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[4] Robert K. Brayton, Gary D. Hachtel, Alberto Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu Tsung Cheng, Stephen Edwards, Sunil
Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, Rajeev K. Ranjan,
Shaker Sarwary, Thomas R. Staple, Gitanjali Swamy, and Tiziano Villa.
Computer Aided Verification: 8th International Conference, CAV ’96
New Brunswick, NJ, USA, July 31– August 3, 1996 Proceedings, chapter
VIS: A system for verification and synthesis, pages 428–432. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

[5] Kypros Constantinides, Onur Mutlu, and Todd Austin. Online design
bug detection: Rtl analysis, flexible mechanisms, and evaluation. In
Proceedings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, pages 282–293. IEEE Computer Society, 2008.

[6] A. B. M. Gomes, F. A. M. Alves, R. S. Ferreira, and J. A. M. Nacif.
Vericonn: a tool to generate efficient interconnection networks for post-
silicon debug. In 2015 16th Latin-American Test Symposium (LATS),
pages 1–6, March 2015.

[7] A. B. T. Hopkins and K. D. McDonald-Maier. Debug support for
complex systems on-chip: a review. IEE Proceedings - Computers and
Digital Techniques, 153(4):197–207, July 2006.

[8] Christoph Kern and Mark R. Greenstreet. Formal verification in
hardware design: A survey. ACM Trans. Des. Autom. Electron. Syst.,
4(2):123–193, April 1999.

[9] H. F. Ko and N. Nicolici. Combining scan and trace buffers for
enhancing real-time observability in post-silicon debugging. In 2010
15th IEEE European Test Symposium, pages 62–67, May 2010.

[10] S. Mitra, S. A. Seshia, and N. Nicolici. Post-silicon validation opportuni-
ties, challenges and recent advances. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 12–17, June 2010.

[11] S. B. Park, T. Hong, and S. Mitra. Post-silicon bug localization in
processors using instruction footprint recording and analysis (ifra). IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(10):1545–1558, Oct 2009.

[12] G. J. Van Rootselaar and B. Vermeulen. Silicon debug: scan chains alone
are not enough. In Test Conference, 1999. Proceedings. International,
pages 892–902, 1999.

[13] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential circuit design using synthesis
and optimization. In Computer Design: VLSI in Computers and
Processors, 1992. ICCD ’92. Proceedings, IEEE 1992 International
Conference on, pages 328–333, Oct 1992.

[14] M. Talupur. Hardware model checking: Status, challenges, and opportu-
nities. In Formal Methods in Computer-Aided Design (FMCAD), 2011,
pages 154–154, Oct 2011.

[15] B. Vermeulen and S. K. Goel. Design for debug: catching design errors
in digital chips. IEEE Design Test of Computers, 19(3):35–43, May
2002.

[16] Bart Vermeulen and Kees Goossens. Debugging Systems-on-Chip:
Communication-centric and Abstraction-based Techniques. Elsevier,
2014.

[17] S. Yang, R. Wille, and R. Drechsler. Determining cases of scenarios to
improve coverage in simulation-based verification. In Integrated Circuits
and Systems Design (SBCCI), 2014 27th Symposium on, pages 1–7, Sept
2014.

[18] Y. S. Yang, N. Nicolici, and A. Veneris. Automated data analysis
solutions to silicon debug. In 2009 Design, Automation Test in Europe
Conference Exhibition, pages 982–987, April 2009.

