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Abstract— Behavioral modeling of single-band radio 

frequency power amplifiers (RFPAs) is commonly performed by 

real-valued radial basis function neural networks (RVRBFNNs). 

In behavioral modeling, the RFPA input and output data are 

complex-valued. Several approaches are available in literature to 

address the decompositions from complex-to-real and real-to-

complex. In this work, the different RVRBFNNs suitable for 

single-band RFPAs are extended to deal with the behavioral 

modeling of dual-band RFPAs. Based on a case report, a 

comparative analysis among 14 different realizations is 

presented.  
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I.  INTRODUCTION 

Radio frequency power amplifiers (RFPAs) are widely 
used in wireless devices [1]-[4]. In this context, the highest 
possible efficiency is necessary, as the power source for such 
devices is a battery. An RFPA has its highest efficiency when 
driven in nonlinear operation regimes. However, to avoid 
interferences among users of the wireless service, it is not 
allowed to work with nonlinear devices. Therefore, it is 
necessary to linearize the RFPA [5] and, for that, a model of 
its functioning is needed. 

In this work, real-valued radial basis function neural 
networks (RVRBFNNs) are used for setting up such models. 
RVRBFNNs have within them coefficients which are 
determined from a supervised nonlinear training algorithm. 
RVRBFNNs were applied to the modeling of complex-valued 
input-output data measured on a single-band RFPA in [6]-[9]. 
The way to represent the input and output values of the RFPA 
within the RVRBFNN implies in different allegiances of the 
models, as all values generated by RFPAs are complex-valued 
and the RVRBFNN involves only real-valued numbers[6]-[9]. 

In this work, RVRBFNNs are applied to the modeling of 
complex-valued data from dual-band RFPAs. Thus, the 
purpose in here is to present and compare several ways to 
represent and insert these complex-valued input and output 
values of dual-band RFPAs in one or more RVRBFNNs. 

This work is set in 4 sections. After this introductory 
section, 14 different RVRBFNNs are defined in Section II. 
Based on a case report, Section III envolves the accuracies 

achieved by each RVRBFNN realization. Section IV discusses 
the simulation results and concludes this work. 

II. RFPA INPUT AND OUTPUT SIGNAL MODELS 

The dual-band RFPA input signal is described as: 

1 1 2 2
1 2| | cos[2 ] | | cos[2 ]

n n n nnx x f n x x f n xπ π= +∠ + +∠% % % %
       (1) 

and the output signal is described as: 

1 1 2 2
1 2| | cos[2 ] | | cos[2 ],

n n n nny y f n y y f n yπ π= +∠ + +∠% % % %   (2) 

where the superscript 1 refers to the first band and the 
superscript 2 refers to the second band. 

To take into account dynamic effects due to non ideal 
frequency response of RFPA internal circuits [10], the 
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functions of present and past complex-valued inputs, e.g. 

functions of 1

n m
x

−
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x

−
% for 0, , ,m M= L  where M is the 

RFPA memory length.  

To take into account nonlinear effects due to power gain 
compression of the RFPA [10], the utilization of a RVRBFNN 
is advised because it employs nonlinear activation functions.  

As the terminology indicates, RVRBFNN does not accept 
complex-valued signals. The complex input envelopes can be 
represented in polar representation according to: 

 
1 1 1exp( )n n nx a jθ=%  (3) 

and 

 
2 2 2exp( ).n n nx a jθ=%  (4) 

The complex output envelopes are first modified by: 

 
1 1 1exp( )n n ny s jθ=% %

    (5) 

and 

 
2 2 2exp( ).n n ny s jθ=% %

    (6) 

 

For the case of single-band RFPAs, [6] uses as RVRBFNN  



inputs only present and past amplitude components, while [7]-
[9] also use the sine and cosine of the difference between two 
consecutive polar angle components. Again, for the case of 
single-band RFPAs, [6]-[8] use as RVRBFNN outputs the 
amplitude and phase components of the modified complex 

envelope | | exp( )n n ns s j s= ∠% % % , while [9] uses as RVRBFNN 

outputs the real and imaginary parts of the modified complex 

envelope Re( ) Im( )n n ns s j s= +% % % . Besides, in [6]-[7] a single 

RVRBFNN of two outputs is used, while in [8]-[9] two 
independent RVRBFNNs of single output are used. 

Based on the previous studies of [6]-[9] for single-band 
RFPAs, the general RVRBFNN shown in Fig. 1 can be defined 

for the modeling of dual-band RFPAs. In Fig. 1, 1

n

as , 1

n

bs , 

2

n

as and 2

n

bs  refer to the two real-valued components of the 

modified complex-envelopes, which can be either the real and 
imaginary parts or the amplitude and phase components. 
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Fig. 1. Block diagram of a general RVRBFNN for dual-band RFPAs. 

 

However, Fig. 1 is not the only possible realization for a 
RVRBFNN intended for dual-band RFPAs. In fact, as done in 
[8] and [9], two independent networks can be used. Besides, it 
is also possible to reduce the number of inputs, as done in [6]. 
Thereupon, different combinations among many possible 
cases are created in order to compare and determine the case 
that presents the best trade-off between modeling complexity 
and accuracy. To simplify the notation, the following 
terminology is adopted: 

A: 
1
n ma − for 0, ,m M= L are applied as RVRBFNN inputs. 

B: 
2
n ma − for 0, ,m M= L are applied as RVRBFNN inputs. 

C: 
1 1

1cos( )n m n mθ θ− + −−  and 
1 1

1sin( )n m n mθ θ− + −−  for 

0, ,m M= L are applied as RVRBFNN inputs. 

D: 
2 2

1cos( )n m n mθ θ− + −−  and 
2 2

1sin( )n m n mθ θ− + −−  for 

0, ,m M= L are applied as RVRBFNN inputs. 

E: 1 1Re( )
n

a
ns s= % and 1 1Im( )

n n

bs s= %  are estimated at the 

RVRBFNN outputs. 

F: 2 2Re( )
n n

as s= % and 2 2Im( )
n n

bs s= %  are estimated at the 

RVRBFNN outputs. 

G: 1 1| |
n n

as s= % and 1 1

n n

bs s= ∠%  are estimated at the 

RVRBFNN outputs. 

H: 2 2| |
n n

as s= % and 2 2

n n

bs s= ∠%  are estimated at the 

RVRBFNN outputs. 

Concerning to the use of a single RVRBFNN, the 4 cases 
reported in Table I are defined in this work.  

TABLE I.  CASES THAT UTILIZE A SINGLE RVRBFNN  

Case Input Output 
1 AB EF 
2 ABCD EF 
3 AB GH 
4 ABCD GH 

 
Concerning to the use of two RVRBFNNs, the 10 cases 

reported in Table II are defined in this work.  

TABLE II.  CASES THAT UTILIZE TWO RVRBFNNS  

Case Band 1 

Input 

Band 1 

Output 

Band 2 

Input 

Band 2 

Output  
5 A E B F 
6 AB E AB F 
7 AC E BD F 
8 ABC E ABD F 
9 ABCD E ABCD F 
10 A G B H 
11 AB G AB H 
12 AC G BD H 
13 ABC G ABD H 
14 ABCD G ABCD H 

 

III. CASE REPORT 

The 14 distinct realizations of RVRBFNN-based dual-
band RFPA behavioral models described in Section III are 
now applied to a case report. The input-output data is collected 
from a dual-band RFPA MATLAB description, composed of a 
finite impulse response (FIR) filter in series with a polynomial 
nonlinearity. The RFPA stimulus signal is composed of two 
carrier signals: one carrier at 900 MHz modulated by a 3GPP 
WCDMA envelope signal and one carrier at 2.5 GHz 
modulated by an LTE OFDMA envelope signal. The data is 
sampled at a rate equal to 61.44 MHz. 



The network training is performed in MATLAB using a 
Gauss-Newton nonlinear optimization [11]. All the network 
parameters (neural network centers, input bias, output bias and 
weights) are initialized by the value 1. The maximum number 
of iterations is set to 3000. The memory length M is set to 1. 
The number of hidden neurons is varied. Only RVRBFNNs 
having at most 50 parameters are trained. 

The modeling accuracy is measured by the normalized 
mean square error (NMSE) [12], according to: 

. . 2

1
10

. 2

1

( )

10log ,

( )

N
a mea a es
n n

n

N
a mea
n

n

y y

NMSE

y

=

=

 
 −
 

=  
 
  

∑

∑

% %

%
             (7) 

where N is the total number of samples, the superscript mea 
refers to the complex envelope measured at the RFPA output, 
the superscript es refers to the complex envelope estimated by 
the RVRBFNN model and the superscript a refers to which 
band is being calculated (1 or 2).  

The measured data is divided in one subset for network 
training and one for evaluating the modeling accuracy. All the 
reported results are, therefore, obtained using the test set. 

In a first scenario, the purpose is to verify if the using of 
input amplitudes at both bands is required to estimate the 
complex-valued envelope at a specific band. In other words, 

the importance of using 
2
n ma −  for estimating 1

n
y% , as well as of 

using 
1
n ma −  for estimating 2

n
y% , is evaluated. Tables III and IV 

present the best NMSE results for estimating 1

n
y% and 2

n
y% , 

respectively. 

TABLE III.  NMSE RESULTS OBTAINED USING (AND NOT USING) 
2
n ma −  

AS INPUT FOR ESTIMATING 
1

n
y%   

Input 
2
n ma −  NMSE (dB) 

absent -20.66 

present -29.79 

 

TABLE IV.  NMSE RESULTS OBTAINED USING (AND NOT USING) 
1
n ma −  

AS INPUT FOR ESTIMATING 
2

n
y%   

Input 
1
n ma −  NMSE (dB) 

absent -21.09 

present -28.69 

 
In a second scenario, the purpose is to verify the necessity 

of using phase information on the previous time instant. In 

other words, the importance of using 
1 1

1cos( )n m n mθ θ− + −−  and 

1 1
1sin( )n m n mθ θ− + −−  for estimating 1

n
y% , as well as of using 

2 2
1cos( )n m n mθ θ− + −−  and 

2 2
1sin( )n m n mθ θ− + −−  for estimating 2

n
y% , 

is now evaluated. Table V reports the best NMSE results. 

TABLE V.  NMSE RESULTS OBTAINED USING (AND NOT USING) PAST 
INPUT PHASE INFORMATION  

Past input phase 

information 

NSME (dB) 

for 1

n
y%  

NSME (dB) 

for 2

n
y%  

present -20.66 -21.09 

absent -19.21 -19.76 

 
In a third scenario, the purpose is to determine whether to 

use a rectangular decomposition or a polar decomposition at 
the network output. In other words, the cases in which the 

RVRBFNNs have as outputs 1 1Re( )
n

a
ns s= % , 1 1Im( )

n n

bs s= % , 

2 2Re( )
n n

as s= % and 2 2Im( )
n n

bs s= % are compared to the cases in 

which the RVRBFNNs have as outputs 1 1| |
n n

as s= % , 1 1

n n

bs s= ∠% , 

2 2| |
n n

as s= % and 2 2

n n

bs s= ∠% . Table VI reports the best NMSE 

results. 

TABLE VI.  NMSE RESULTS OBTAINED USING EITHER THE RECTANGULAR 
DECOMPOSITION OR THE POLAR DECOMPOSITION AT THE RVRBFNN OUTPUTS 

RVRBFNN output 

decomposition 

NSME (dB) 

for 1

n
y%  

NSME (dB) 

for 2

n
y%  

rectangular -27.90 -28.54 

polar -29.79 -28.69 

 
In a fourth scenario, the benefits of using one or two 

networks are addressed. To that purpose, Fig. 2 shows the best 
NMSE results as a function of the number of network 
coefficients. 

N
M
S
E
 (
d
B
)

 

Fig 2. NMSE results when using different number of neural networks. 

 

Finally, Figs. 3 and 4 show the normalized output 
amplitude as a function of the normalized input amplitude for 
the two bands. Observe that the best RVRBFNN model is in 
accordance with the measured input-output data. 
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Fig. 3. Measured and best estimated normalized output amplitude as a 

function of the normalized input amplitude for band 1. 
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Fig. 4. Measured and best estimated normalized output amplitude as a 

function of the normalized input amplitude for band 2. 
 

IV. DISCUSSIONS AND CONCLUSIONS 

Based on the results reported in Section III, it can be 
concluded that, for the input-output data used, it is of extreme 
necessity the use of information on the magnitude of both sets 
of entries for the creation of an accurate model for the dual-
band RFPA. 

However, the use of past information about the phase of 
the input envelope signals provides only negligible 
improvements in modeling accuracy. Therefore, a better trade-
off between computational complexity (e.g. number of 
network parameters) and modeling accuracy is achieved by 
not using past input phase information. 

Concerning to the output decomposition, both approaches 
(using either real and imaginary or magnitude and phase) 
resulted in extremely similar NMSE values. Hence, for the 
input-output data used in this work it is indifferent the use of 
one or another representation method. 

Finally, by a closer look into Fig. 2, it can be seen that, in a 
scenario of same computational complexity, the adoption of 
two neural networks (e.g. one network for estimating each 
band) provides lower NMSE values in comparison to the case 
of working with just one network. 

Thus, among all the analyzed cases, the best value of 
NMSE is obtained by using the amplitude information at both 
inputs in two different neural networks. Each network 
estimates the output at a particular band and the network 
outputs can estimate either the rectangular or polar 
components of a modified RFPA output. 
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