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Abstract—In this article, the simplification of the Volterra 

series is applied to different multiplicities between the carrier 

frequencies of a dual-band power amplifier. In here, the theory 

used at previous works is extended to different cases. In all cases, 

new specific terms are included to maintain the model accuracy. 

The terms of every different case are identified. Matlab 

simulations validate the models. A generic model containing all 

extra terms is created and tested. The results are presented to 

validate the study. 

Keywords—Behavioral modeling; Power amplifier; Volterra 

series. 

I.  INTRODUCTION 

The power amplifier has a crucial importance at energy 
consumption in wireless communication systems. The dual-
band power amplifier (DBPA), as an extension of the single-
band power amplifier, has the same importance. To obtain low 
consumption levels, the DBPA must operate at a high power 
region. Although, in this region, the DBPA presents 
nonlinearities which interfere the component performance, 
causing noise and distortions. The operation at the linear region 
is impracticable for the energy consumption is elevated. An 
actual solution is a technique called digital predistortion, or 
DPD, which, when put together with a power amplifier, makes 
the combination behaves like a linear system. 

One of the biggest limitations of the DPD technique is that, 
for its project to be accomplished, a cheap and easy-to-use 
computational model of power amplifier is required. 

Created by the Italian Vito Volterra, the Volterra series may 
be used to model a DBPA, because this series can model 
nonlinear systems with memory [1]. 

One of the biggest issues in Volterra series is that it 
generates too many coefficients, becoming difficult its 
application. Even though, in the previous work of [2], it is 
proven that, for single-band power amplifiers, only a small 
number of coefficients is really important for a precise model. 
The previous research of [3] confirms that the reduction 
strategy can be expanded to the DBPA case, without generality 
loss. There is also proof that, for carrier frequencies that are 
integer multiples of each other, new specific terms must be 
added to maintain the modeling accuracy. 

The contributions of this work are twofold. First, in here, 
the cases where the carrier frequencies are multiples 3, 4 and 5 
times between each other are analyzed. There are also the cases 
where the carrier frequencies have no integer multiplicity and 
are one the double of the other, but, these two cases were 
studied before, and are being used here just for comparison. 
Second, a generic model that includes the additional terms for 
each analyzed integer multiplicity (2, 3, 4 and 5) is presented. 
The accuracy of the different models is assessed based on a 
case study. 

The organization of this work is given as follows. Section II 
explains the theory used to develop this work. Section III 
presents the results to validate all the studied cases. The 
conclusions are shown at Section IV. 

II. VOLTERRA SERIES 

Dating from 1887, the Volterra series was created by the 
Italian Vito Volterra, and its capability of modeling nonlinear 
systems with memory made it known at the world war II, being 
used to analyze the effect of radar noise in a nonlinear receiver 
circuit. The Volterra series has adjustable parameters called 
kernels. A four input Volterra series can be generically 
described by 

 
( )

( )

( )

1 2 1 2 31 2 1 2 3

1 2 1 2 3

0

1
1 4 1 1 1 1

1 1

1 1

1

1
1 2 3 4 1

1 11 2

11 2
*
1 2

2

2 1 3 1 2

0 0 0 01 1

0 0
= =

1

1 1

P

a

P= q qP P q qP P P

q qq qP P P P PP P P P P

q qP P P P P

P P P P j

q q jP P P

j

j j

P P M M M
y n =

== = = =
+

M M M M

= =

PM
h x n q, , ,

= =q ,q , ,q

PP + P

x n q x

=P+ =P+P +

+ + ++ + + + +

+ − + + −

−

… … …

−

… …

−

…

−

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∏

∏ ( )

( )

2 3

3

1 2 3 4
*
2

4

4 1 2 3
1

j

j

j

+P +P

n q

P + P + P +P

x n q

=P+P +P +

−

−

∏

∏

 
(1) 

   



where M is the memory length and P0 is the polynomial order 
truncation. The four inputs are represented by x1, x2, and their 
complex conjugates x1* and x2*. In (1), the symmetric 
coefficients were excluded, for it don't cause any influence at 
the results. Though, even with a more compact model, the 
number of coefficients generated by (1) grows exponentially 
with the values of P0 and M. The subscript “a” refers to the 1st 
or 2nd bands. 

Another Italian, Sergio Benedetto, in the previous work of 
[2], showed that for a single-band power amplifier, only a 
small number of coefficients is important to describe how the 
power amplifier behaves around the carrier. In the previous 
work of [3], it's shown that this strategy can be expanded to a 
DBPA. The others coefficients only contribute at the harmonic 
frequencies of the carrier. Applying the proposed changes, (1) 
can be reduced to  
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where P0 = 2P-1. To model y2, the roles of x1 and x2 must be 
changed in (2).  

 Equation (2) drastically reduces the number of coefficients. 
Still, the model loses accuracy when frequencies multiple 
between each other are applied.  

 Indeed, when the carrier frequencies have an integer 
multiplicity between each other, new terms must be added, 
depending on the multiplicity itself. In the work of [3] it was 
validated for the case where the frequencies were one the 
double of the other, and the Volterra series were truncated at 
5th order, with memory length equal to 1.  

 In this work, the focus is to extend the previous work of [3], 
now analyzing the cases where the carrier frequencies have 
integer multiplicities of 3, 4 and 5 times and creating a generic 
script where all the extra terms are added together, looking for 
the possibility to input any multiple carriers and still attain 
good results. Also, the Volterra series is now truncated at 7th 
order, with memory length equal to 1. 

III. VALIDATION 

The Volterra series from (1) and (2) are now analyzed for 
P0=7 and M=1, where (1) creates 6434 coefficients and (2) 

creates 224 coefficients to estimate each output (y1 or y2). In 
this work, Matlab software scripts were made based on the 
Volterra series (1) and (2). Moreover, specific scripts for each 
carrier integer multiplicity were made. 

The programs are applied to fit input-output data obtained 
from a DBPA represented by a Wiener architecture, which 
utilizes a finite impulse response (FIR) filter with two 
coefficients and a seventh order polynomial. The complex-
valued envelopes that modulate the carriers f1 and f2 are, 
respectively, a 3GPP WCDMA signal with a bandwidth of 8.84 
MHz and an LTE OFDMA signal with a bandwidth of 10 
MHz. The complex-valued envelopes were captured at a 
sampling frequency of 61.44 MHz. A total of 5000 samples 
were collected. The least squares algorithm used 2500 samples 
to extract the Volterra kernels, leaving the other 2500 samples 
to the modeling validation. Error signals defined by the 
difference between desired and estimated output signals were 
calculated. The normalized mean square error (NMSE), 
according to [4], was then evaluated. 

A. Case 1: f1 and f2 have no integer multiplicity 

In this case, f1 = 614.4 MHz and f2 = 2000 MHz. Table I 
shows the NMSE results obtained using (1) and (2). 

TABLE I.  NMSE RESULTS IN DB FOR CASE 1 

Band Model Extraction Validation 

f1 (1) -232.9565 21.7107 

f1 (2) -59. 9024 -48.8486 

f2 (1) -238.5808 16.8703 

f2 (2) -61.9960 -48.9472 

 

Table I shows that the error obtained from the extraction 
data, using (1), is very low. That occurs due to the high 
quantity of coefficients, creating a perfect model for the 
extraction data. The validation error is too high for the same 
reason. The coefficients acquired from extraction are set 
perfectly for the extraction data. Any different data applied to 
this identified model will create points in completely different 
places. Equation (2) creates a much smaller group of 
coefficients, and due to this, the error for the extraction data is 
higher than for (1). However, the model created can be used 
with any package of data, and that is proved by the validation 
NMSE. 

B. Case 2: 2f1=f2 

In this case, f1 = 614.4 MHz and f2 = 1228.8 MHz. Table II 
shows the NMSE results obtained using (2) and its modified 
version, called (2) mod., that includes the additional terms 
reported in Table III. 

TABLE II.  NMSE RESULTS IN DB FOR CASE 2 

Band Model Extraction Validation 

f1 (2) -24.6386 -15.7751 

f1 (2) mod. -63.3634 -48.3028 

f2 (2) -27.3703 -16.6879 

f2 (2) mod. -66.2316 -48.5571 

 

Because f2 is an integer multiple of f1, the additional terms 
reported in Table III must be included in (2). 



TABLE III.  NEW TERMS FOR CASE 2 

Band New terms Total coefficients 

f1 

(X2.X1*) 

(X2.X1*)(X1.X1*) 
(X2.X1*)(X2.X2*) 

X1(X2*.X1.X1) 

(X2.X1*)(X2.X1*.X1*) 
X1(X1.X1*)(X2.X1*.X1*) 

X1(X1.X1*)(X2*.X1.X1) 

X1(X2.X2*)(X2.X1*.X1*) 
X1(X2.X2*)(X2*.X1.X1) 

(X2.X1*)(X2.X2*)(X2.X2*) 

X1(X2.X1*.X1*)(X2.X1*.X1*) 
X1(X2*.X1.X1)(X2*.X1.X1) 

(X2.X1*)(X2.X1*.X1*)(X2.X2*) 

480 
(13 new terms) 

f2 

(X1.X1) 
(X1.X1)(X1.X1*) 

(X1.X1)(X2.X2*) 

X2(X2.X1*.X1*) 
(X1.X1)(X2*.X1.X1) 

X2(X1.X1*)(X2.X1*.X1*) 

X2(X1.X1*)(X2*.X1.X1) 
X2(X2.X2*)(X2.X1*.X1*) 

X2(X2.X2*)(X2*.X1.X1) 

(X1.X1)(X1.X1*)(X1.X1*) 
X2(X2.X1*.X1*)(X2.X1*.X1*) 

X2(X2*.X1.X1)(X2*.X1.X1) 

(X1.X1)(X1.X1*)(X2*.X1.X1.) 

462 

(13 new terms) 

 

Equation (2) presents a bad performance for the fact that 
the carrier frequencies are multiple between each other. When 
extra terms are added to (2), creating (2) modified, the 
performance is significantly improved. 

C. Case 3: 3f1=f2 

In this case, f1 = 614.4 MHz and f2 = 1843.2 MHz. Because 
f2 is an integer multiple of f1, the additional terms reported in 
Table IV must be included in (2). 

TABLE IV.  NEW TERMS FOR CASE 3 

Band New terms Total coefficients 

f1 

(X2.X1*.X1*) 

X1(X2.X1*.X1*.X1*) 

X1(X2*.X1.X1.X1) 
(X2.X1*.X1*)(X2.X2*) 

(X2.X1*.X1*)(X2.X1*.X1*.X1*) 

(X2.X1*.X1*)(X1.X1*)(X1.X1*) 
(X2.X1*.X1*)(X1.X1*)(X2.X2*) 

(X2.X1*.X1*)(X2.X2*)(X2.X2*) 

X1(X1.X1*)(X2*.X1.X1.X1) 
X1(X2.X2*)(X2*.X1.X1.X1) 

460 

(10 new terms) 

f2 

(X1.X1.X1) 

(X1.X1.X1)(X1.X1*) 

(X1.X1.X1)(X2.X2*) 
X2(X2.X1*.X1*.X1*) 

X2(X1.X1*)(X2.X1*.X1*.X1*) 

X2(X1.X1*)(X2*.X1.X1.X1) 
X2(X2.X2*)(X2.X1*.X1*.X1*) 

X2(X2.X2*)(X2*.X1.X1.X1) 

(X1.X1.X1)(X2*.X1.X1.X1) 
(X1.X1.X1)(X1.X1*)(X1.X1*) 

436 

(10 new terms) 

 

Table V shows the NMSE results obtained using (2) and its 
modified version, called (2) mod., that includes the additional 
terms reported in Table IV. 

 

TABLE V.  NMSE RESULTS IN DB FOR CASE 3 

Band Model Extraction Validation 

f1 (2) -27.0774 -16.7229 

f1 (2) mod. -61.0868 -46.3332 

f2 (2) -32.2328 -22.0990 

f2 (2) mod. -64.5057 -47.4720 

 

Just as before, the error in (2) is bigger than the maximum 
accepted. Though, with the new terms added, the NMSE results 
shown are far better. 

D. Case 4: 4f1=f2  

In this case, f1 = 614.4 MHz and f2 = 2457.6 MHz. Because 
f2 is an integer multiple of f1, the additional terms reported in 
Table VI must be included in (2). 

TABLE VI.  NEW TERMS FOR CASE 4 

Band New terms Total coefficients 

f1 

(X2.X1*.X1*.X1*) 

X1(X2.X1*.X1*.X1*.X1*) 

X1(X2*.X1.X1.X1.X1) 
(X2.X1*.X1*.X1*)(X2.X2*) 

288 

(4 new terms) 

f2 

(X1.X1.X1.X1) 

X2(X2.X1*.X1*.X1*.X1*) 
X2(X2*.X1.X1.X1.X1) 

(X1.X1.X1.X1)(X1.X1*) 

276 
(4 new terms) 

 

Table VII shows the NMSE results obtained using (2) and 
its modified version, called (2) mod., that includes the 
additional terms reported in Table VI. 

TABLE VII.  NMSE RESULTS IN DB FOR CASE 4 

Band Model Extraction Validation 

f1 (2) -40.8177 -32.5696 

f1 (2) mod. -60.6161 -48.5335 

f2 (2) -47.1141 -37.2589 

f2 (2) mod. -62.5285 -48.3406 

  

 The results are the same as seen before. The modified 
model improves the NMSE results by adding few new terms. 

E. Case 5: 5f1=f2 

In this case, f1 = 614.4 MHz and f2 = 3072 MHz. Because f2 
is an integer multiple of f1, the additional terms reported in 
Table VIII must be included in (2). 

TABLE VIII.  NEW TERMS FOR CASE 5 

Band New terms Total coefficients 

f1 

(X2.X1*.X1*.X1*.X1*) 

X1(X2.X1*.X1*.X1*.X1*.X1*) 

X1(X2*.X1.X1.X1.X1.X1) 
(X2.X1*.X1*.X1*.X1*)(X2.X2*) 

302 
(4 new terms) 

f2 

(X1.X1.X1.X1.X1) 

X2(X2.X1*.X1*.X1*.X1*.X1*) 

X2(X2*.X1.X1.X1.X1.X1) 
(X1.X1.X1.X1.X1)(X1.X1*) 

286 
(4 new terms) 

 

Table IX shows the NMSE results obtained using (2) and 
its modified version, called (2) mod., that includes the 
additional terms reported in Table VIII. 



TABLE IX.  NMSE RESULTS IN DB FOR CASE 5 

Band Model Extraction Validation 

f1 (2) -48.5174 -39.9026 

f1 (2) mod. -60.6999 -48.4478 

f2 (2) -52.5354 -41.0897 

f2 (2) mod. -61.9209 -47.0777 

 

Same as always, the new terms on the modified model can 
improve the accuracy of the DBPA. 

It can be noticed that accordingly to the growth of the 
multiplicity, the new terms begin to appear only in the bigger 
orders, and decrease their quantity. For example, when the 
multiplicity is 5, like in case 5, the first new terms only appear 
in the 5

th
 order. It occurs to all the integer multiplicities, that's 

why case 2 has 13 new terms and case 5 has only 4. Also, 
usually, not generally, the more new terms you have the more 
coefficients. That can't be a rule because it depends specifically 
on the terms added. There are terms that create more 
coefficients than others, due to the combination of inputs. 

F. Case 6: generic model 

In this case, all data packages were used and all NMSE 
collected. The generic model has all extra terms from all the 
cases analyzed in this work, totalizing 31 new terms for f1 (858 
coefficients) and also 31 for f2 (788 coefficients). The first 
expectancy was that some terms from different cases should be 
equal. This way, the generic model would utilize just one of 
them and the results would be better. However, the only 
appearance of equal terms was from different bands, e.g. the 
term X2(X1.X1*)(X2.X1*.X1*.X1*) which is found in case 3, 
in band f2, and the term X1(X2.X1*.X1*)(X2.X1*.X1*) which 
is found in case 2, band f1, are equal. The problem is that when 
the equal terms are found in different bands, the generic model 
can't take advantage from it. 

Table X shows the NMSE results obtained using the 
generic model for all the carriers with integer multiplicities 
studied in this work and the case where the carriers have no 
integer multiplicity. 

TABLE X.  NMSE RESULTS IN DB FOR CASE 6 

Data applied 

Band 

f1 f2 
Extraction Validation Extraction Validation 

f1=614.4 MHz 

f2=2000 MHz 
-62.7457 -37.6648 -64.6536 -42.7010 

f1=614.4 MHz 
f2=1228.8 MHz 

-65.7117 -39.4559 -68.4471 -43.2871 

f1=614.4 MHz 

f2=1843.2 MHz 
-62.9589 -40.1624 -67.5297 -41.3023 

f1=614.4 MHz 
f2=2457.6 MHz 

-63.5355 -39.4087 -65.6576 -40.7489 

f1=614.4 MHz 

f2=3072 MHz 
-63.6397 -39.7308 -65.0794 -39.9906 

 

Figure 1 shows the output amplitude as function of the 
input amplitude for y1 modeling in case 2. Measured data 
represents the output of the DBPA. Simulated 1 represents the 
Volterra series of (2), without adding the extra terms. 
Simulated 2 represents the output of the generic model, where 
all the extra terms for all cases were added. Equation (2) 

modified for case 2 was not included in the figure because the 
results were very close to Simulated 2. 

 

Fig. 1. Output amplitude as function of input amplitude for y1 modeling in 

case 2, where Measured represents the output of the DBPA, Simulated 1 

represents the Volterra series of (2) output and Simulated 2 represents the 
generic model output. 

It can be seen that Simulated 1 presents an error much 
higher than Simulated 2, as seen in Tables II and X. 

IV. CONCLUSION 

As shown in previous works, to model DBPAs using 
Volterra series, a great amount of attention should be paid in 
the addition of the extra terms, because every case demands 
specific terms, and that should be calmly analyzed. The 
construction of a generic model for DBPAs using Volterra 
series can present satisfactory results as long as all the terms 
are correctly added to the model. The addition of too many 
terms causes the generic model to be more inaccurate than the 
specific models, but, still can be used for general purposes. 
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