
Improving the Efficiency of AES Encryption Algorithm by Using

the co-designed Strategy

Ricardo Peixoto Robaina

UNIPAMPA – Federal University of Pampa

Bagé-RS, Brazil

ricardorobaina11@gmail.com

Bruno Silveira Neves

UNIPAMPA – Federal University of Pampa

Bagé-RS, Brazil

brunoneves@unipampa.edu.br

 Fábio Livi Ramos

UNIPAMPA – Federal University of Pampa

Bagé-RS, Brazil

fabioramos@unipampa.edu.br

ABSTRACT

Currently, the need for mechanisms for information security is

indisputable. In addition, it is noted that with high-speed

communication, wireless technology carries out a predominant role

in data transmission. In the wireless environment, one of the most

commonly used security algorithms in the MAC (Medium Access

Control) layer is Advanced Encryption Standard (AES). Therefore,

increasing the efficiency of this algorithm means increasing at the

same time the efficiency of much of the communication. The

present study proposes a solution based on the co-design technique

for the AES cipher algorithm. An analysis and implementation of

an advanced hardware architecture was performed to process part

of the algorithm, the rest was processed in software. A cost-benefit

analysis was made from the implemented solution. Tests and

validation of the created component were obtained through

testbenchs also developed. As expected, the version of the

algorithm in co-design achieved a higher performance compared to

the software version at the cost of a small increase in the processor

area.

KEYWORDS

Algorithm; Encryption; co-design.

1 INTRODUCTION

Throughout the history of information security, several

cryptographic algorithms have been used to protect data in different

categories. At the present, the AES (Advanced Encryption

Standard) algorithm is the most widely used in the industry, being

also the widely cited in the academic environment [7-11]. In the

current context, the AES receives great attention not only for

providing a high level of security for the data, but also for its high

efficiency during the process of encryption/decryption of the

information, and for its low memory consumption, which enables

its large use in the mobile devices.

The cryptographic process of the data with a symmetric key

performed by AES is subdivided into 10, 12 or 14 steps or rounds,

depending on the size of the key used by the algorithm. As shown

in Figure 1, four basic operations are performed on each round:

AddRoundKey, SubBytes, ShiftRows, and MixColumns, except in

the last round, when the MixColumns operation is not performed.

 Figure 1: AES Algorithm Operation Flow.

2 INTERNAL DESCRIPTION OF MACRO

OPERATIONS PERFORMED BY AES

The complexity of the AES algorithm is given by the combination

of the results from each of its macro operations. The description of

each of them is as follows:

• AddRoundKey, in this step are combined the columns of the block

to be encrypted with the key of the round, generated in the

expansion routine.

• SubBytes, there is the transformation that replaces the bytes of the

state array by bytes of the S-Box, an auxiliary array. The calculation

of the index of the matrix to be replaced is done by dividing the

current byte into two parts. The 4 most significant bits of the byte

indicate the line and the 4 least significant bits indicate the column

to be replaced from the S-box.

• ShiftRows, such a step acts on the state rows by shifting the bytes

in each row of a given number of positions. In AES, the first line is

unchanged. Each byte of the second line is shifted to the left of a

position. Similarly, the third and fourth rows are offset from two

and three positions respectively.

• MixColumns, this step operates on each column of the state array,

multiplying them by a fixed array.

3 METHODOLOGY

The methodology used to develop this study consists of the

following steps:

1) Selection of the tools for implementation, validation and

evaluation of the co-design based solution for the target application.

2) Execution of application partitioning in software and hardware

components.

3) Implementation of the hardware component.

4) Development, execution and analysis of tests for the hardware

component developed in step 3.

5) Execution of the co-synthesis followed by the integration of the

components.

6) Validation of the proposed new solution and also the verification

and evaluation of its charge-area-performance ratio.

7) Comparison of the results obtained at the end of the work with

the data available in the literature for related works.

4 DEVELOPMENT

Based on the steps provided in the methodology for the

development of this work, the following productions were obtained

for this study up to the present moment:

Step 1 - Atera's Qsys [5] environment choice as a co-design tool

for implementing the hardware and software components of the

target application. It was determined that both the validation and

the evaluation of the final application achieved should be

performed using a prototype built from a Nios II Embedded kit [6],

which is based on a field-programmable device (FPGA).

Step 2 - To establish the partitioning, a study was carried out in

a software version of the algorithm. In this study, the impact of each

step on the processing time of the algorithm was measured. The

most costly stage, in terms of software execution time, is SubBytes,

accounting for 74% of the total execution time of the algorithm. As

can be seen in figure 2.

Therefore, it established that a hybrid arrangement in which the

SubBytes operation is implemented in hardware, because such a

step has a greater impact on the AES execution time. The rest of

the application runs in software on a general purpose processor.

Figure 2: Impact of each step on processing time.

Step 3 - The hardware component of the SubBytes step has been

developed in a fully combinational, in such a way that the full

SubBytes operation is performed in only one clock cycle.

Step 4 - To validate the correct functioning of the component

created, a specific TestBench was developed for such application.

For this purpose, it was implemented a comparison of the outputs

produced by the hardware SubBytes component with the outputs

produced by the software version of this component, using several

different input stimuli.

Step 5 - In the co-synthesis stage, the selected toolset was used

to generate the software, the hardware and the interface logic for

the hybrid AES system.

Step 6 - The validation of the solution was made by comparing

the results produced by the encryption of data blocks using the co-

design solution with the results produced by the encryption of the

same blocks using an previously validated software version.

5 RESULTS AND DISCUSSIONS

The area occupied in projects synthesized in FPGA's is given by

the number of logic elements used in it. For the intended analysis

of area, it was considered a ciclone III EP3C25F423C6 FPGA from

Altera. Thus, initial estimates of the implementation produced by

this work point to an increase in the FPGA area of 5.48% compared

to a conventional implementation in which the entire algorithm is

executed in software on a general purpose processor, as can be

noticed in figure 3.

0
10
20
30
40
50
60
70
80

Impact of each step on
processing time

Impact on Processing

Figure 3: Comparative use of logical elements

Although a combinational solution tends to lead to an expressive

area increase, the small additional cost obtained in area is justified

by the use of the internal memory of the FPGA to implement the

Sbox matrix out of the logical elements space of the device.

 On the other hand, the estimated execution time is about 64% less

than that of the conventional solution, executed entirely in software,

as is shown in figure 4.

The expressive increase in efficiency is given by the fact that the

hardware component is fully combinational. For this reason, the

entire operation runs in only one clock cycle, compared to the same

operation in software that takes approximately 117 cycles to be

completely executed.

Figure 4: Comparison of number of cycles required to perform

the operation

 When analyzing the abovementioned data together, the area and

the execution time, a favorable charge-benefit ratio is observed.

With the use of the proposed project, despite a small area increase,

there is a significant improvement in performance compared to the

fully software version. Figure 5 shows this relation.

 Figure 5: Comparative of Charge-Benefit

6 CONCLUSION

Through the study, it was observed that, by using the co-design

technique efficiently, an expressive performance improvement in

the AES encryption algorithm is obtained, at the cost of a small

increase in the processor area. The cost (in area) of a co-design

solution tends to be lower compared to a fully-developed hardware

design.

It is believed to be important to improve the set of results

produced in this study, through the use of energy consumption

reduction techniques balanced with other key factors: performance,

area and price. In this way, better inputs are created for a more

effective final comparative evaluation with results in the literature.

REFERENCES
[1] El Maraghy, Mazen; Salma Hesham; Mohamed A. Abd El Ghany. "Real-

time efficient FPGA Implementation of AES Algorithm." SOC Conference (SOCC),

2013 IEEE 26th International. IEEE, 2013.

[2] Gomes, Leandro As; Bruno S. Neves; Leonardo B. Pinho. "Empirical

Analysis of Multicore CPU and GPU-Based Parallel Solutions to Sustain Throughput

Needed by Scalable Proxy Servers for Protected Videos." Computer Systems

(WSCAD-SSC), 2012 13th Symposium on. IEEE, 2012.

[3] Tonde, Ashwini R.; Akshay P. Dhande. "Implementation of Advanced

Encryption Standard (AES) Algorithm Based on FPGA." International Journal of

Current Engineering and Technology 4.2, 2014.

[4] Seshadrinathan, M., and Dempski, K. L.,

“Implementation of Advanced Encryption Standard for

Encryption and Decryption of Images and Text on a GPU”,

IEEE CVPRW´08, Anchorage, AK, USA, 2008.

[5] Altera, “Quartus Prime Features” Available:

https://www.altera.com/products/design-software/fpga-design/quartus-

prime/features/qts-qsys.html

[6] Altera, “Products Kit CVC3 embedded” Available:

https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyc3-

embedded.html

[7] Drimer, Saar; Tim Güneysu; Christof Paar. “DSPs, BRAMs, and a Pinch

of Logic: Extended Recipes for AES on FPGAs. Journal ACM Transactions on

Reconfigurable Technology and Systems, USA, 2010.

0

1000

2000

3000

Processor Co-design

Comparative Use of Logical
Elements

Logical Elements

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

Software Version Co-design Version

Cycles required for encryption of
10 thousand data blocks

Cycles

0

20

40

60

80

100

120

140

160

180

Software Version Co-design Version

Charge-Benefit

Area Performance

https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyc3-embedded.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyc3-embedded.html

[8] Hoang, Anh-Tuan; Takeshi Fujino. “Intra-Masking Dual-Rail Memory

on LUT Implementation for SCA-Resistant AES on FPGA”. Journal ACM

Transactions on Reconfigurable Technology and Systems, USA, 2014.

[9] Yingxi Lu; O’Neil, Maire; McCanny, John. “Evaluation of Random

Delay Insertion against DPA on FPGAs”. Journal ACM Transactions on

Reconfigurable Technology and Systems, USA, 2010.

[10] Peter Hellekalek; Wegenkittl, Stefan. “Empirical evidence concerning

AES”. Journal ACM Transactions on Modeling and Computer Simulation, USA, 2003.

[11] Ted Huffmire et al. “Security Primitives for Reconfigurable Hardware-

Based Systems”. Journal ACM Transactions on Reconfigurable Technology and

Systems, USA, 2010.

