
New Features of IPNoSys IDE

Victor Santos Batista
Universidade Federal Rural do Semi-Árido (UFERSA)

Centro de Ciências Exatas e Naturais
Mossoró - Brasil

victor.sb02@gmail.com

Sílvio Roberto Fernandes
Universidade Federal Rural do Semi-Árido (UFERSA)

Centro de Ciências Exatas e Naturais
Mossoró - Brasil

silvio@ufersa.edu.br

ABSTRACT

IPNoSys is an unconventional architecture based on networks-on-

chip. It defines its own programming and computation models. To

learn its concepts and to develop experiments, there are a SystemC

simulator and an assembler. These tools were previously integrated

into an IDE, implemented in Qt, that added a text editor and

animated graphical interface for the simulation. In this paper are

presented new tools to this IDE, such as autocomplete functions,

support for C language and breakpoint, among others.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools → Compilers; Computer systems

organization → Architectures → Other architectures

KEYWORDS

IPNoSys, IDE, tool, unconventional achitecture

ACM Reference format:

V. Batista, S. Fernandes. 2017. New Features of IPNoSys IDE. In

Proceedings of 17th Microelectronics Students Forum, Fortaleza, Ceará

Brazil, August 2017 (SForum’17), 4 pages.

1 INTRODUCTION
In all science course the theory and practice are of the utmost

importance to the learning process, thus computer science is not

different. However, many institutions are no having laboratories

with the hardware necessary to perform the practice. In this way,

the importance of using simulators arises, because it provides the

abstraction of the hardware operation.

The simulators represent a powerful tool for the teaching of

computer architectures [10]. By providing the abstraction of the

architecture, the students simulate its behavior and visualize the

operational details better, favoring the learning process. The costs

with the simulator are very lower than the hardware acquisition,

which facilitates the teaching and manipulation of that. They are

also very important in the teaching of theoretical architectures in

the research phase, since the manufacture of hardware is much

more expensive. With regard to unconventional architectures [1],

which may have their own characteristics and paradigms, the use

of tools (simulators, compilers, etc.) for learning and experiments

may be indispensable.

An example of a tool with this purpose is "IPNoSys IDE" [8]

that integrates a development and simulation environment for the

unconventional architecture IPNoSys. Such tool aims to aid the

teaching IPNoSys concepts, but also as a research tool related to

the IPNoSys architecture and helps in understanding the execution

of the applications since the debugging process by the previous

tools to this architecture is not a trivial task.

The constant evolution of IPNoSys IDE it becomes necessary,

to improve the development environment to the users, promoting

the teaching and research, increasing productivity and improving

abstraction to IPNoSys. Users report that the IPNoSys IDE

improves the process to coding, testing and debug, however, it

identified some characteristics that can improve in IPNoSys IDE

and some that can be included.

Thus, this paper presents new features of IPNoSys IDE, a

simulator tool dedicated to experiments with an unconventional

architecture based on NoCs. The new resources added the IDE. The

rest of this paper is organized into three sections. Section II

describes the platform IPNoSys. Section III presents the new

features of the IPNoSys IDE. Lastly, section IV discusses the

conclusions.

2 IPNOSYS PLATFORM

2.1 Organization and Architecture

IPNoSys is a general-purpose processor with an unconventional

organization that takes advantage of infrastructure and features

from network-on-chip to favoring parallel communication and

processing. Such organization is formed by a network of RPUs

(Routing and Processing Unit) with a MAU (Memory Access Unit)

in each corner (Fig. 1).

Figure 1: IPNoSys Organization.

SFORUM’17, August 2017, Fortaleza, CE Brazil Victor Batista and Silvio Fernandes

2

The RPUs are responsible for routing packets and execute logic

and arithmetic instructions inside them. Thus, the RPUs are formed

by regular components of routers as buffers, a crossbar, and

arbiters, but also includes one Arithmetic Logic Unit (ALU) and

one Synchronization Unit (SU). The MAUs load and store data, as

well as inject packets and execute synchronization instructions.

IPNoSys also has an input and output system based on DMA

(Direct Memory Access) which is controlled by one of the MAUs,

called IOMAU. It has the following characteristics: topology NoC

Square 2D grid; It uses at least two virtual channels; routing XY

modified; switching combining VCT and wormhole; control credit-

based flow; distributed arbitration; and storage at the entrance [5].

The architecture comprises 32 instructions [7], divided into

regular (logical, arithmetic, conditional and auxiliary) and control

(synchronization and memory access). The regular instructions are

similar to those of any traditional processor and are executed by the

RPUs. The control instructions are executed by the MAUs and

consist of only: Load, Store, Send, Exec, Synexec and Sync.

2.2 Computing and Programming Models

The IPNoSys applications are described by packet format that

includes a header (with information of application and packet

routing), instructions and operands. An application is formed by a

set of packets that are stored in memories on corners of the network.

Such memories are managed by MAUs, which injects packets

(ordered by EXEC or SYNEXC/SYNC instructions) and

reads/writes data (by the LOAD, SEND and STORE). In each

packet, instructions are queued according to the data dependencies

among subsequent operations. Such dependencies establish the

order that the instructions will appear in the packets. Thus, the

results of previous instructions can be used as an operand in

following instructions. Thus, when a packet is injected each RPU

executes at least one instruction, stores temporary the result,

forward the rest of the packet, inserting the result in a specific

position of packet as an operand to other instruction. This

computing model is represented in Fig. 2.

Figure 2: Computing Model: (a) before; (b) after execution

Such packets flow according to a routing algorithm that

guarantees all instructions are executed and solves the conflicts and

imminent deadlocks. Others purpose algorithms are presents in [2].

The packets can be injected sequentially by the same MAUs, as a

pipeline, or simultaneously by four MAUs to exploit parallelism.

To develop applications to IPNoSys is used its assembly

language, called PDL (Packet Description Language) that has

structures equivalent to packet's fields. Such language allows the

programmer parallelizes explicitly the code and indicates the join

points. The parallelism with better performance in IPNoSys is in

task level, mainly from unrolling loops [6].

2.3 Development Tools

The IPNoSys experimental environment relies on the following

tools: an assembler, a simulator and an IDE, illustrated in Fig. 3.

The assembler, written in C++, performs a lexical and syntactic

analysis from PDL code and generating an equivalent object code.

The object code is read by the simulator, developed in SystemC [9]

with cycle accurate, in order to execute the program and generate a

simulation report with many information at the end. The simulator

also allows the generation of a log file with individual information

of each component, when the debug macros are enabled before the

simulator is compiled. However, since the components have

concurrent behavior (implemented thought SystemC threads),

debug information may be chronologically difficult to track.

This has led to the development of an IDE (Integrated

Development Environment) [8] in C++ and Qt [4]. Such IDE

includes a text editor interconnects the original assembler and

simulator, shows the simulation in a graphical interface in animated

way and exhibit the simulation report.

In [8] is presented the first version of IPNoSys IDE, which is

divided in three modules: editor, simulator and simulation report.

Figure 3: IPNoSys Development and Simulation Environment

The editor module highlights the reserved words of PDL and the

current line, the number of lines and has tradition functions like

copy, paste and undo; the editor keeps communication with

assembler, providing the PDL code and displaying the

successful/unsuccessful message from assembler. The simulation

module keeps communication with the IPNoSys SystemC

simulator, that executes in background, and provides tools for the

user controls and observes the execution of the compiled code in an

animated way. Through the graphical interface, the user can modify

all parameters of the SystemC simulator and choose the velocity

animation (in instructions per seconds) or step mode (the cycles

correspond user's clicks). This module also allows observing what

each component is doing at a given time, including the ALU, the

input buffers and arbitrators of each RPU (by clicking on one of

them), as well as the MAUs. As the packets are being processed

New Features of IPNoSys IDE SFORUM’17, August 2017, Fortaleza, CE Brazil

 3

and routed between the RPUs the animation shows each part of the

package colorfully in the components that hold it. The report

module only shows the simulation report generated by the

simulator.

The next section presents the new features purpose by this paper

for editor and simulator modules.

3 NEW FEATURES OF IPNOSYS IDE

3.1 Editor Module

In order to increase the abstraction and explore parallelism

automatically, [3] developed C2PDL, a compiler of language C to

PDL. This compiler, with the objective of to explore parallelism,

has three levels to optimization: O (no optimization); O1 (reducing

LOAD-STORE and COPY instructions); O2 (unrolling loops

executing by parallel threads).

This compiler is being included to IPNoSys IDE, thus this paper

already includes in the editor the highlighting the C code syntax

(Fig. 4). The highlight of C as PDL, is achieved by Qt resources for

regular expressions and syntax highlighting classes [4].

The new features purpose in this paper for editor module are:

find and replace functions, autocomplete to C and PDL code,

memorization of working directory and the construction of an

infrastructure for editor communication with the C2PDL compiler

and the assembler.

The autocomplete resource has been implemented by

monitoring events in the editor text area. As the user types, a search

is initiated for reserved words (no case sensitive) of the language

(C or PDL) depending on how the file was saved (.c or .asm).

Identifiers created by users like program names, packages,

variables, and result labels are included in another list to be

searched for auto-completion. All results of the search are listed in

a pop-up at the current text cursor location and refreshed while the

user is typing. The user can select any word of pop-up for choose

that it will appear in the text area (Fig. 4).

Figure 4: Example of new features in IPNoSys IDE

3.2 Simulator Module

In the simulation module, it was added the functionality of open the

object code file without the need to open PDL code, nor compile it.

It is thus possible to start the simulation of a previously compiled

code. And the more relevant feature proposed in this paper is the

inclusion of breakpoint function, which makes it possible to

perform a code debugging even it is parallel.

The breakpoint mechanism affects almost all components in

IPNoSys platform, since editor until SystemC simulator, aided by

the breakpoint table. In order to insert a breakpoint, a programmer

clicks on left side of a line, which causes the appearance of the letter

B next to the line number (lines 23 and 25 of Fig. 4).

This causes the editor to insert the source code line into the

breakpoint table. During assembler work, the generated object code

statements corresponding to the lines marked in the source code and

the MAU identifier that will inject the packet of those instructions

are also included in this table. Finally, while loading the packets to

the memories of each MAU, the memory addresses of the

breakpoint instructions are marked in the table. Fig. 5 summarizes

this process.

Figure 5: Breakpoint table

During the simulation, the packets are injected by the MAUs,

which send the address of each packet word to the memory and

receive the corresponding value. In this process, when an address

is found in the breakpoint table, it causes the simulation of the

program to stop. Fig. 6 shows a simulation stopped by a breakpoint,

that is reported in output box as “Breakpoint found”. This allows

the programmer to perform debugging more easily, thereby

increasing productivity and improving the validation of

simulations. The user can clicks on any RPU to see (at right side)

the current information about its buffers, operation and results.

Clicking on a MAU is shown the data in the correspondent

memory.

SFORUM’17, August 2017, Fortaleza, CE Brazil Victor Batista and Silvio Fernandes

4

Figure 6: Simulation stopped by breakpoint

4 CONCLUSIONS
The paper presents new features of IPNoSys IDE, a development

and simulation environment to the unconventional architecture

IPNoSys, that provides to students, programmers and researchers,

a greater abstraction of the architecture and tools to support the

learning its paradigm, development of programs and simulation

process.

Aiming to improve the abstraction, productivity and accuracy

we added new resources in the editor and simulator modules. In this

version, IPNoSys IDE supports C language to integration to

C2PDL compiler; includes "Find and Replace" tool; has

autocomplete function to PDL and C source codes; opens object

code (.ipn) and simulates directly; and provide breakpoint

mechanism. The constant evolution and update of the IDE besides

favoring programmers and researchers, allowing focus on

applications and the organization and architecture. This IDE has

been used in many in undergraduated and post-graduate researches.

As the IPNoSys IDE was developed in a modular way, if changes

are made to base tool code (assembler and SystemC simulator), and

preserve the communication interfaces with the GUI, new

architecture models may arise and to benefit from this integrated

environment.

Future works include: to improve the information shown by

RPUs during the simulation, also show the internal state of MAUs;

allow to change, in runtime, the GUI idiom (Portuguese or

English), currently is done in compiler-time; show automatically

the source code that cause the breakpoint during simulation;

include all IPNoSys versions (developed by other researchers) and

allow the user choose one to simulation and summarize a

simulation report comparing them; evaluate the IDE's usability by

the users feedback and their options about what can improve.

ACKNOWLEDGMENTS

This work was supported by UFERSA from PICI project

“Implementação de Novas Funcionalidades na IPNoSys IDE”.

REFERENCES
[1] A. Adamatzky. Unconventional computing. International Journal of General

Systems, 2014 Vol. 43, No. 7, 671–672

[2] Raimundo Valter Costa Filho, Silvio Fernandes, Dênis Nunes, I. A. Alves, and

W. Dantas. 2014. Exploração de espaço de projeto do roteamento na arquitetura

IPNoSys. HOLOS 4: 175–184.

https://doi.org/http://dx.doi.org/10.15628/holos.2014.1909

[3] Juliene Vieira Couto. 2016. Geração de Código Otimizado para Exploração de

Paralelismo em uma Arquitetura não Convencional. UFERSA, Mossoró.

[4] Digia. Qt Project. Retrieved from http://qt-project.org/

[5] Sílvio Fernandes, Bruno C. Oliveira, and Ivan Saraiva Silva. 2009. Using NoC

Routers As Processing Elements. In Proceedings of the 22Nd Annual

Symposium on Integrated Circuits and System Design: Chip on the Dunes

(SBCCI ’09), 24:1–24:6. https://doi.org/10.1145/1601896.1601927

[6] Silvio Roberto Fernandes, Bruno Cruz de Oliveira, Miklécio Costa, and Ivan

Saraiva Silva. 2009. Processing while routing: a network-on-chip-based parallel

system. IET Computers & Digital Techniques 3, 5: 525–538.

[7] Silvio Roberto Fernandes, Ivan Saraiva Silva, and Márcio Kreutz. 2010. Packet-

driven General Purpose Instruction Execution on Communication-based

Architectures. Journal of Integrated Circuits and Systems (JICS) 5: 53–66.

[8] Lucas Oliveira and Silvio Fernandes. 2015. IPNoSys IDE Ambiente de

Desenvolvimento e Simulação Integrado para uma Arquitetura não

Convencional. International Journal of Computer Architecture Education

(IJCAE) 4, 1: 21–24.

[9] ACELLERA. SystemC. Retrieved from:

http://accellera.org/downloads/standarts/systemC

[10] G. Wolffe, W. Yurcik, H. Osborne and M. Holliday, Teaching

Computer Organization/Architecture With Limited Resources Using

Simulators, ACM SIGCSE Bulletin 34, (1), 176-180, 2002.

