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Abstract—To improve the efficiency of wireless transmitters, 

the peak-to-average power ratio (PAPR) of complex-valued 

envelope signals can be reduced through a limiting and filtering 

technique. A constrained nonlinear optimization tool is reported 

in literature for the identification of the clipping factor and a 

finite impulse response (FIR) filter. In this work, such tool is 

extended to handle the identification of an infinite impulse 

response (IIR) filter. The extension is not straightforward 

because IIR filters can exhibit instability and the nonlinear 

optimizer becomes more susceptible to be trapped into local 

minima. An additional constraint is incorporated here to 

guarantee stability and coefficients from a Butterworth low-pass 

filter are chosen as an initial guess for the identification 

procedure. Matlab simulation results from a case study that 

employs a WCDMA envelope signal show that an extra PAPR 

reduction of 1.5 dB is achieved by adopting the optimized IIR 

filter instead of an optimized FIR filter, where this number is 

equivalent to 15.5% of the initial PAPR value. 
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I.  INTRODUCTION 

The power amplifier (PA) is the device that consumes the 
highest amount of power in a wireless communication system 
[1]. Increasing its efficiency is extremely beneficial for 
extending the battery autonomy in handsets and reducing the 
costs in base stations. PA efficiency improves with the 
increase of average output power [2]. To explore its most 
efficient behavior, the PA is put to operate at regimes of 
strong power gain compression, near saturation [2]. Then, the 
generated nonlinearities are compensated through a digital 
baseband predistorter (DPD) having an inverse characteristic 
with respect to the PA [3]. In an ideal scenario, the cascade 
connection of DPD followed by PA exhibits a linear 
relationship up to the saturation point.  Besides, at a fixed peak 
level, any reduction in the peak-to-average power ratio 
(PAPR) of the envelope signal is translated into an increase in 
average power. Considering that some amount of distortions 
inside and outside the signal main channel is accepted, any 
available distortion margin can be exploited to further improve 
the efficiency [4]. An example of such crest factor reduction 
(CFR) technique is the limiting and filtering approach [5]. The 
limiter clips the signal peaks and the filter attenuates the 

distortions at adjacent channels. In [6], a constrained nonlinear 
optimization is presented to identify, at the same time and 
based on the overall system behavior, the limiter clipping 
factor as well as the taps of a finite impulse response (FIR) 
filter. However, such approach cannot be directly applied to 
the identification of a limiter followed by an infinite impulse 
response (IIR) filter, due to instability issues. Moreover, the 
nonlinear training tends to become more susceptible to be 
trapped into local minima in presence of the IIR filter, 
compared to the FIR filter case. The contribution of this work 
is to expand the constrained optimizer by including an 
additional restriction to avoid instability problems and to 
illustrate an example of good initial guess for the IIR filter 
poles and zeros, based on the Butterworth low-pass filter [7]. 

This work is organized as follows. Section II details the 
limiting and filtering technique. Section III describes the FIR 
and IIR digital filters. Section IV addresses the CFR parameter 
identification based on a constrained nonlinear optimization. 
Section V reports Matlab results from a case study. 
Conclusions are given in Section VI. 

II. LIMITING AND FILTERING TECHNIQUE FOR PAPR 

REDUCTION 

The CFR technique has the purpose to reduce the PAPR of 
complex-valued envelope signals. A very popular CFR 
technique consists of a set of two cascaded blocks represented 
by a limiter followed by a linear digital filter, as shown in Fig. 
1. 

 
Fig. 1. Block diagram of limiting and filtering technique. 

The CFR first block is the hard-clipping limiter [8]. This 
limiter class clips signal peaks whose amplitudes surpass a 
pre-defined value, whereas time domain samples having 
amplitudes below the threshold are kept unchanged. It should 
be noticed that, for complex-valued envelope signals, a hard-
clipping limiter only changes the signal amplitude, thus the 
signal phase remains unchanged. The hard-clipping limiter 
mathematical representation, in time domain, is given by: 
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where w[n] is the input signal and x[n] the output signal. The 
hard-clipping limiter has only one real-valued parameter, 
namely the clipping factor L, whose value is chosen, in this 
work, based on an optimization tool.  

The purpose of the CFR limiter is to reduce the PAPR by 
clipping the signal peaks. However, such task can only be 
performed at the expense of generating significant distortion 
levels inside and outside the signal main channel. 

III. LINEAR DIGITAL FILTERS 

Linear digital filters represent the CFR second block. Their 
goal is to partially correct the distortions caused by the limiter 
block at adjacent channels. This filter block restores to some 
extent the signal peaks clipped by the CFR first block, 
therefore causing an increase in PAPR value. Notice that there 
is an exchange between PAPR value and signal distortions. 

In this work, two types of linear digital filters are 
addressed: finite impulse response (FIR) and infinite impulse 
response (IIR).  

A. FIR Filter 

The FIR filter is a linear digital class where the output 
signal in a certain instant of time depends of the input signals 
at current and past times and of filter coefficients [9-10]. The 
FIR filter mathematical representation is given by: 
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where hk are FIR filter coefficients, M the FIR filter order, y[n] 
and x[n] the FIR filter output and input complex-valued 
signals, respectively. The number of FIR filter coefficients, or 
equivalently the number of past input samples that influences 
the present output plus one, is given by the filter order. It is 
noted that the FIR filter does not have any feedback and, 
hence, it is immune to instability problems. 

B. IIR Filter 

More general than the FIR filter, the IIR filter is a class of 
linear digital filters whose output signal in a certain instant of 
time depends of the input signals in current and past times, 
like FIR filter, and of the sampled output signals in past times. 
Thus, in opposite of the FIR filter, the IIR filter has negative 
feedback, what could foment the instability problem [9-10]. In 
discrete time, the instability problem arises when there is at 
least one pole whose amplitude is greater than or equal to the 
unitary value.  

Starting from the constant coefficient linear difference 
equation and after some algebraic manipulations, the 
mathematical representation of the IIR filter is obtained as 
[11]: 
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where bm are the filter coefficients associated to input signals, 
ak the filter coefficients associated to output signals in past 
times, a0 the coefficient associated to output signal in current 
time, M and N the numbers of filter coefficients associated to 
input and output signals respectively, where these numbers 
subtracted by 1 are the number of considered past samples. 
The FIR filter can be seen as a particular instance of the IIR 
filter, obtained when N is set to 0 and a0 to 1 in (3). 

IV.  CFR PARAMETER IDENTIFICATION 

In this work, the limiter clipping factor L from (1), as well 
as the filter coefficients, either hk from (2) or a0, ak and bm  
from (3), are chosen based on the following constrained 
optimization. The optimization goal is to minimize the PAPR 
at the CFR output, while respecting a pair of constraints 
related to acceptable levels of signal distortions: error vector 
magnitude (EVM) and adjacent channel power ratio (ACPR). 
EVM is a metric that measures, in time domain, the distortions 
inside the signal main channel and is represented as follows:  
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where y[n] and w[n] are the CFR output and input signals 
respectively and NT is the total number of available samples. 
The distortions located outside the signal channel are 
quantified by the ACPR. Differently from EVM metric, this 
one works with signals in frequency domain and its value is 
given by: 
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where the Y(f) represents the frequency domain description of 
the CFR output signal and the indexes adj and main refer to 
adjacent and main channels, respectively.  

Besides, to avoid instability problems, in case of IIR filter, 
a third constraint must be considered in order to guarantee that 
all the poles must not have amplitudes equal or larger than 
one. 

In summary, the constrained optimization algorithm can be 
mathematically modeled as follows: 
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where Vectorpoles is a vector containing all the IIR filter poles, 
MAXEVM a number that indicates the maximum tolerable level 
of EVM distortion, MAXACPR a number that indicates the 
maximum acceptable level of ACPR distortion and x indicates 
the vector of optimization variables, which includes L from 
(1), together with either hk from (2) or a0, ak and bm from (3). 

It is worth mentioning that the objective function and all 
the constraint functions depend on the optimization variables 
in a nonlinear way. Therefore, a nonlinear tool must be 
employed to perform such constrained optimization. Nonlinear 
algorithms demand for an initial guess for each optimization 
variable and can be trapped into local minima according to the 
starting point. Given the broader range of phenomena covered 
by the IIR filter, the optimizer performance is expected to be 
more sensitive to the IIR filter initial guess, especially for its 
poles.  

V.  MATLAB SIMULATION RESULTS 

In this section, the limiter described in (1) and the FIR and 
IIR filters described in (2) and (3) were applied to the PAPR 
reduction of a test signal. The test signal consists in a 
sequence of 2048 time domain samples of a WCDMA 
complex-valued envelope having a bandwidth of 3.84 MHz, 
sampled at 61.44 MHz and showing a PAPR value equal to 
9.7 dB. 

The constrained nonlinear optimization is performed in 
Matlab software using the interior point algorithm [12] and 
double precision floating point arithmetic. The clipping factor 
L was initiated by a value within a closed interval between 0.3 
and 0.8. The truncation factors M from (2) and (3), as well as 
N from (3), were set equal to 11. The initial guesses for the 
FIR filter coefficients were randomly selected in an open 
interval from 0 to 1. Concerning the IIR filter, the initial 
guesses for its coefficients were copied from a Butterworth 
low-pass filter approximation. A Butterworth low-pass filter 
approximation is given by [7]: 
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where n is the filter order and ω0 the filter cutoff frequency. In 

here n was set to 11 and ω0 to 12.06 Mrad/s. 

In relation to the optimization nonlinear constraints, it was 
set a maximum value for the EVM of 17.5% and for the 
ACPR of -45 dB.  For the ACPR calculation, an adjacent 
channel of bandwidth equal to 3.84 MHz, and whose center is 
5 MHz from the main channel center, was considered. 

Table I shows the PAPR reduction provided by the two 
implemented CFRs that differ between them just by their 
linear digital filters. According to Table I, between the digital 
filters implemented and optimized in this work, the IIR filter 
obtained a PAPR reduction there is 1.5 dB larger than the one 
offered by the FIR filter, where this number is equivalent to 
15.5% of the initial PAPR value. Therefore, if the extra 
concerns that appear in IIR filter designs, namely instability 
issues and susceptibility to initial conditions, are properly 

handled during the parameter identification, then a very 
significant further reduction in PAPR is achieved, in 
comparison with FIR filters, thanks to the superior modeling 
capability of IIR filters attributed to the presence of negative 
feedback. 

TABLE I.  SIMULATION RESULTS  

CFR Filter PAPR reduction 

FIR 2.3 dB 

IIR 3.8 dB 

 

Figures 2, 3 and 4 illustrate how the CFR technique, with 
the limiter and linear filter optimized, acts to reduce the PAPR 
of the complex-valued envelope signal. Figure 2 shows 
waveforms of the CFR input and output amplitudes, for the 
realizations with the FIR and IIR filters. Figure 3 shows the 
power spectral densities (PSDs) of the CFR input and output 
signals, again for the realizations with IIR and FIR filters. 
Figure 4 shows the CFR output amplitude in function of the 
CFR input amplitude, once more for the two types of filters 
studied in this work. From Fig. 2, it is noticed that the two 
implemented CFRs reduced the PAPR by clipping the input 
signal peaks. In a comparison between the two filters, Fig. 2 
clearly illustrates that the CFR implemented with IIR filter 
provides a much more significant decline of the signal peaks.  

  

Fig. 2. Amplitude waveforms at CFR input and output. 

From Fig. 3, it is observed that the CFRs inserted 
distortions at adjacent channels of the complex-valued 
envelopes. In particular, the CFR output with IIR filter 
presented larger distortions than the CFR output with FIR 
filter. Hence, the extra PAPR reduction offered by the IIR 
filter, in comparison with the FIR filter, can be related to its 
more aggressive use of the available distortion margin at 
adjacent channels, as illustrated in Fig. 3. The transfer 
characteristics shown in Fig. 4 evidence that the CFR not only 



 

 

manipulate in a nonlinear way the complex-valued envelope, 
asserted by the gain compression and saturation mechanisms, 
but also aggregate memory effects due to the scattering aspect 
of the curves. A comparison between the two approaches 
shows that the CFR output with FIR filter saturates at a higher 
amplitude level (around 0.6 V) with respect to the CFR output 
with IIR filter (around 0.5 V). 
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Fig. 3. Power spectral densities at CFR input and output. 
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Fig. 4. CFR output amplitude in function of CFR input amplitude, for FIR 
and IIR filters. 

VI. CONCLUSIONS 

In this work, the CFR technique was approached, which is 
composed by a hard-clipping limiter and a linear digital filter. 
Both FIR and IIR filter realizations were implemented in this 

work. The instability issue in IIR filters was handled by 
adding a constraint in the nonlinear optimization procedure. 
While the FIR filter coefficients can be initiated by random 
values without compromising the quality of the identified 
parameters, the initial guess for IIR filters must be carefully 
chosen to avoid the training algorithm to be trapped into local 
minima. Based on simulation results from a WCDMA test 
signal and interior point algorithm, by using as initial values 
for the IIR filter the coefficients of a Butterworth low-pass 
approximation, a further 1.5 dB reduction in PAPR was 
achieved by means of the IIR filter instead of the FIR filter. A 
future direction for this work is to address the power 
consumption of a fixed-point arithmetic hardware 
implementation of the CFR technique in field programmable 
gate arrays or application specific integrated circuits.  
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