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Abstract— In this project,  a low intermediate frequency 
(low-IF) 16 Quadrature Amplitude Modulation (QAM)  is  
implemented in Python, aiming at a future VHDL 
implementation and validation of a receiver. The system consists 
of a modulator, an Additive White Gaussian Noise (AWGN) 
channel model, and a demodulator. The Gardner Algorithm is 
implemented in the demodulator to synchronize the symbols. A 
concise block diagram is reached in the Python implementation 
which will guide the VHDL codification to optimize the final 
architecture. All the results obtained in the simulations will be 
used to verify the VHDL performance. 
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I. INTRODUCTION  

Low intermediate frequency (low-IF) receivers are the 
most used architectures in modern wireless communications 
[1], for instance in the growing Market of Internet of Things 
(IoT) applications.  

The QAM (Quadrature Amplitude Modulation) is used in 
several communication systems, such as digital TV, digital 
radio, high speed internet services, and other systems with a 
high data rate requirement. The main reason for its adoption is 
its high spectral efficiency. 

The first step in the design of a digital receiver (RX) and a 
transmitter (TX) is modeling of the complete communication 
system. In this work, Python language was chosen for this task 
mainly due to the wide availability of libraries for digital 
communication applications, good documentation, and low 
cost. The next step is the development of a hardware 
description language model to guide the implementation in 
field-programmable gate array (FPGA) or Application 
Specific Integrated Circuit (ASIC). 

This work presents the development of Python models for 
a QAM modulator and a QAM demodulator, and the initial 
development of the VHDL code for the modulator. The work 
is structured as follows. Section II presents the methodology, 
Section III presents the Python implementation, with the 
beginning of the VHDL implementation and simulation 
results discussed in Sections IV and V respectively. Section 
VI concludes the work.  

II. METHODOLOGY 

The design development was defined in two phases: 

A. Modelling in Python 

Python language was chosen to model the system for two 
main reasons: being opensource, and for the large number of 
available libraries for simulations and data comparison. The 
main libraries used in this project are commpy [2] and 
scipy.fftpack [3]. 

B. VHDL codification 

With a concise model of the system, the blocks are 
implemented one by one in VHDL, using Xilinx ISE 
environment.  Results are compared through generated text 
files to verify the precision of the fixed-point implementation. 

III. PYTHON IMPLEMENTATION 

A. 16-QAM Modulator Implementation in Python  

The 16-QAM is characterized by representing each 
symbol with 4 bits. This information can be viewed in the 
form of a constellation (Fig. 1), where each point represents a 
combination of 4 bits.  

The modulator block diagram is presented in Fig. 2. To 
generate all the 16 possible symbols at least once in a 
simulation, 64 symbols were proposed. Hence 256 pseudo-
random bits are required at the input of the model.  

The first block in the modulator chain is the slicer logic 
block. It separates the even bits in the In-phase (I) vector, and 
the odd bits in the Quadrature (Q) vector. After this operation, 
both vectors will be treated in parallel. 

The mapper block will transform a pair of bits into a 
symbol. So, a vector with all possible amplitudes and phases 
for two bits is created (1).  

 
Fig. 1 - Constellation IQ, 16-QAM Mapper. 
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             𝑄𝐴𝑀 = [−1 −0.333 0.333 1]                    (1) 

The pair of bits is used as an index for the array QAM, as 
shown in (2).  

00 →  −1;  01 →  −0. 333; 10 →  0. 333;  11 →  1        (2) 

After the symbols generation, the I and Q signals are up-
sampled with a factor of 16 to prepare for the Square Root 
Raised Cosine (SRRC) shaping filter. The filter is required to 
concentrate the symbol information in a defined frequency 
spectrum, thus reducing inter-symbolic interference. After the 
convolution with the filter impulse response, the symbols are 
spread in the time domain.  

The signal frequency after the shaping filter is still not 
modulated and is named baseband signal. Considering that the 
signal will be fed to an intermediate frequency (IF) 
demodulator, it is required to shift the baseband signal to the 
IF frequency using a mixer.  

In the mixing process (Fig. 2), I and Q signals are 
multiplied by cosine and sine signals with a reference 
frequency to shift the baseband to the required IF. In the 
Python implementation, the cosine and sine signals are 
generated using look up tables. After the mixing process, both 
I and Q signals are summed to generate the quadrature IF 
signal. 

B. 16-QAM Demodulator Implementation in Python  

The signal generated by the modulator block in the 
previous section passes by an Additive White Gaussian Noise 
(AWGN) channel model.  At the input of the demodulator the 
signal is defined by the follow expression: 

𝑠(𝑡) = ൣ𝑎ூ cos(2π𝑓௖𝑡 + θ) + 𝑎ொ sin(2π𝑓௖𝑡 + θ)൧ + 𝑛(𝑡) (3) 

where 𝑎ூ  and 𝑎ொ  are the shaped signals in-phase and in 
quadrature, respectively, 𝑓௖ is the carrier frequency, and 𝑛(𝑡) 
is the AWGN. For this model, phase 𝜃  will be considered 
zero. 

The mixer is the first block of the demodulator presented 
in Fig. 3. By trigonometric relations, the product of the signal 
(3) with a cosine with the same frequency will generate back 
the I signal with two components, one centered at zero 
frequency (baseband), and another centered at two times the 
carrier frequency, as shown in (4). Mixing  𝑠(𝑡) in parallel 
with a sine will result the Q signal, with similar characteristics. 

𝑑ூ(𝑡) = 𝑠(𝑡) ∗ cos (2π𝑓௖𝑡) 

  𝑑ூ(𝑡) =
௔಺

ଶ
[1 + cos(4π𝑓௖𝑡)] +

௔ೂ

ଶ
[sin(4π𝑓௖𝑡)] + 𝑛(𝑡)   (4)        

After a low pass filter (LPF), the high frequency 
components are eliminated, (5). 

                          𝐿𝑃𝐹[𝑑ூ(𝑡)] =
௔಺

ଶ
+ 𝑛(𝑡)                             (5) 

A matched filter is implemented after the low pass filter. 
This filter has a very important purpose in the demodulation 
process. Through a convolution of the signal with a template, 
the signal to noise ratio (SNR) is increased. The template used 
is equal to the impulse response of the shaping filter 
introduced at the modulator. 

According to Haykin [4], the relation signal to noise of the 
peak of a pulse in the matched filter depends only of the 
relation between signal energy and the spectral density power 
of the AWGN in the filter input. The bit and symbol average 
energy can be obtained from the amplitudes of the 
constellation symbols, and the noise density power is the 
variance of the gaussian distribution, i.e. the square of the 
standard deviation [5]. 

The SNR is defined by the ratio between bit energy (𝐸௕) 
and noise density power (𝑁௢) using (6) : 

                        𝑆𝑁𝑅 =
ா್ோ

ே೚஻
                                 (6) 

where R is the bit rate, and B is the bandwidth [6]. 

 

 

Fig. 2 - Modulator block diagram. 

 
Fig. 3 - Demodulator Diagram Block. 



The next process is to sample the signal at its peak. The 
difficulty is to know when this peak happens. There are 
several algorithms to synchronize and identify the peak for the 
symbol detection. In this demodulator, the Gardner Algorithm 
is implemented [7]. 

     The Gardner algorithm is based on the follow equation: 

𝑒 = {𝑥[𝑛𝑇] − 𝑥[(𝑛 − 1)𝑇]} ∗ 𝑥 ቂ𝑛𝑇 −
்

ଶ
ቃ          (7) 

where 𝑇 is the sample period and 𝑛 is the iteration number. 
This algorithm analyzes the synchronization word at the 
beginning of the reception and detects which samples 
correspond the symbol’s peak.  

If the result of (7) is smaller than zero, a timing advance is 
required for the next iteration, if the value is larger than zero, 
a timing delay is required. The zero result means that the 
exact value of samples between the symbol peaks was found. 
Timing advance and delay are made by incrementing or 
decrementing the variable 𝑇. 

When the algorithm finds the intervals between symbols, 
the down-sampler block samples the input signal and 
generates an array with the symbol’s values.  

Using the same codification as the mapper block array at 
the modulator, the amplitude symbols are converted to the 
bits they represent. At this moment, I and Q vectors are 
defined. Since the I vector represents the even bits and the Q 
vector represents the odd bits, the bit word is combined back, 
and the bit stream is found. 

IV. VHDL IMPLEMENTATION 

A. 16-QAM Modulation Implementation in VHDL 

The VHDL version of the modulator is implemented 
according to the same block diagram presented in Fig. 2. It 
starts splitting the data into 4-bit arrays by using 4 latches. 
The mapper block takes both odd and even bits and use a look 
up table (LUT) to transform the numbers in fixed point-
numbers of 8-bit 2's complement, as assigned in the python 
version. The clock in the LUT is two-times faster, and the 
look up table is presented as below. 

002 → −110 → 110000002; 012 → −0.33310 → 111010112;
  
112 →   +110 → 010000002; 102 →    +0.33310 → 000101012; 
 

The first bit represents the signal, the second the integer 
part and the last 6 bits the decimal part. In this way, the 
numbers are initially truncated binarily to 8 bits. Since 
“00010101” represents 0.328 and not 0.333 it may require an 
increase in the number of bits depending on the achieved 
performance of the modulator.  

To prepare for the SRRC shaping filter, the symbols go 
through an up-sampler with a factor of 16. It should be 
observed that the clock needs to be 32 times faster than the 
data input. The SRRC block is still under development. In the 
VHDL implementation there is an additional block which is 
the clock generation.   

V. SIMULATION RESULTS 

A. Python modulator implementation 

A SRRC filter with 0.35 roll-off factor was implemented 
in the shaping filter block, Fig. 2.  

      In Fig. 4 (a), the spectrum of the signal at the point “D” 
in Fig.2, and in Fig.4 (b) the spectrum at the point “E” in Fig. 
2 are presented. It is possible to observe that the filter not only 
shapes the signal, but also filters the spectrum. In this 
implementation, the symbol rate was defined as 1 MHz, 
hence with a symbol duration of 1 µs. The shaping  filter 
ensures that the current symbol has an amplitude close to zero 
at the peak of the next symbol, which reduces the probability 
of intersymbol interference. 

Fig. 5 shows the signals I (a) and Q (b) after convolution 
with the filter impulse response, at the “E” point in Fig. . 

 In the next step, presented in Fig.6, the I (a) and Q (b) 
signals are mixed with the 2-MHz sine and cosine clocks and 
summed to generate the IQ modulate signal (c). 

B. Python demodulator implementation 

       The average bit energy was calculated based on the 
distance of the symbols from the center of the constellation. 
The average bit energy is 0.278 µJ. In this simulation, the bit 
rate is 4 Mb/s and the bandwidth of the signal is 1 MHz. So, 
an AWGN with variance of 35.512n is necessary for a SNR 
of 15dB according to (6). 
 
 

 
Fig. 4 - Comparison between the frequency spectrum of the 

signal before (a) and after (b) the shaping filter. 

 
Fig. 5- Signals I (a) and Q (b) after the convolution with the 

SRRC filter 



 
When the signal gets to the demodulator, a mixing process 

is executed, resulting in a signal with multiple frequencies as 
shown in (4). In this modeling, the sine and cosine waves 
have the same frequency and phase as the modulator. In the 
future, this limitation will be removed using a phase detector. 
An LPF with cut off frequency of 1 MHz is implemented after 
the mixer to acquire these signals in baseband frequency. 

The I and Q signals pass through a matched filter to 
increase SNR, also increasing the amplitude. Comparing Fig. 
5 with Fig. 7, it is possible to notice that the first symbol was 
not accounted. Since it is a recursive filter it loses the first 
samples.  

In Fig. 8 are the resulting constellations at the output of 
the modulator (a) and at the output of the demodulator (b), 
obtained by sampling the output of the matched filter using 
Gardner’s Algorithm (7).  

C. VHDL Simulation Results 

 After the mapper was implemented in VHDL the data 
was imported to Python and compared with the mapper 
model, (1) and (2). Is possible to see in Fig. 9 (c) a difference 
of 5% between the two implementations. 

VI. CONCLUSIONS 

In this work, 16-QAM modulator and demodulator are 
modeled in Python aiming to a future VHDL design. The 
main parts of the system were discussed and simulated in 
detail. The Python results can be used to check VHDL 

performance. A phase detector block still needs to be 
developed to synchronize  receiver phase to the input signal  
received from the modulator. The initial blocks of the 
modulator were implemented in VHDL. The results obtained 
are in good agreement with the python model. 
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Fig. 7 – I(a) and Q(b) signals after the LPF and Matched Filter.   

 

Fig. 6 - Mixed signals I (a) and Q (b) and IQ (c). 

 
Fig. 9 – Mapper output in VHDL (a), in Python (b) and data 

comparation between the two platforms (c). 

 
Fig. 8 - Comparation between the modulator (a) and demodulator 

(b) constellation. SNR = 15dB. 


