

Development of a 16-QAM Modulator and
Demodulator Python Model Suitable for VHDL

Implementation

Arthur Cruz Morbach
Polytechnic School
Unisinos University

Brazil
arthurmorbach@edu.unisinos.br

Jonas Dandanel de Castro
Polytechnic School
Unisinos University

Brazil
 jdcastro@edu.unisinos.br

Sandro Binsfeld Ferreira
Polytechnic School
Unisinos University

Brazil
sbinsfeld@unisinos.br

Abstract— In this project, a low intermediate frequency
(low-IF) 16 Quadrature Amplitude Modulation (QAM) is
implemented in Python, aiming at a future VHDL
implementation and validation of a receiver. The system consists
of a modulator, an Additive White Gaussian Noise (AWGN)
channel model, and a demodulator. The Gardner Algorithm is
implemented in the demodulator to synchronize the symbols. A
concise block diagram is reached in the Python implementation
which will guide the VHDL codification to optimize the final
architecture. All the results obtained in the simulations will be
used to verify the VHDL performance.

Keywords—Quadrature Amplitude Modulation, modulator,
demodulator, Python, VHDL.

I. INTRODUCTION

Low intermediate frequency (low-IF) receivers are the
most used architectures in modern wireless communications
[1], for instance in the growing Market of Internet of Things
(IoT) applications.

The QAM (Quadrature Amplitude Modulation) is used in
several communication systems, such as digital TV, digital
radio, high speed internet services, and other systems with a
high data rate requirement. The main reason for its adoption is
its high spectral efficiency.

The first step in the design of a digital receiver (RX) and a
transmitter (TX) is modeling of the complete communication
system. In this work, Python language was chosen for this task
mainly due to the wide availability of libraries for digital
communication applications, good documentation, and low
cost. The next step is the development of a hardware
description language model to guide the implementation in
field-programmable gate array (FPGA) or Application
Specific Integrated Circuit (ASIC).

This work presents the development of Python models for
a QAM modulator and a QAM demodulator, and the initial
development of the VHDL code for the modulator. The work
is structured as follows. Section II presents the methodology,
Section III presents the Python implementation, with the
beginning of the VHDL implementation and simulation
results discussed in Sections IV and V respectively. Section
VI concludes the work.

II. METHODOLOGY

The design development was defined in two phases:

A. Modelling in Python

Python language was chosen to model the system for two
main reasons: being opensource, and for the large number of
available libraries for simulations and data comparison. The
main libraries used in this project are commpy [2] and
scipy.fftpack [3].

B. VHDL codification

With a concise model of the system, the blocks are
implemented one by one in VHDL, using Xilinx ISE
environment. Results are compared through generated text
files to verify the precision of the fixed-point implementation.

III. PYTHON IMPLEMENTATION

A. 16-QAM Modulator Implementation in Python

The 16-QAM is characterized by representing each
symbol with 4 bits. This information can be viewed in the
form of a constellation (Fig. 1), where each point represents a
combination of 4 bits.

The modulator block diagram is presented in Fig. 2. To
generate all the 16 possible symbols at least once in a
simulation, 64 symbols were proposed. Hence 256 pseudo-
random bits are required at the input of the model.

The first block in the modulator chain is the slicer logic
block. It separates the even bits in the In-phase (I) vector, and
the odd bits in the Quadrature (Q) vector. After this operation,
both vectors will be treated in parallel.

The mapper block will transform a pair of bits into a
symbol. So, a vector with all possible amplitudes and phases
for two bits is created (1).

Fig. 1 - Constellation IQ, 16-QAM Mapper.

Alessandro Girardi

Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020

 𝑄𝐴𝑀 = [−1 −0.333 0.333 1] (1)

The pair of bits is used as an index for the array QAM, as
shown in (2).

00 → −1; 01 → −0. 333; 10 → 0. 333; 11 → 1 (2)

After the symbols generation, the I and Q signals are up-
sampled with a factor of 16 to prepare for the Square Root
Raised Cosine (SRRC) shaping filter. The filter is required to
concentrate the symbol information in a defined frequency
spectrum, thus reducing inter-symbolic interference. After the
convolution with the filter impulse response, the symbols are
spread in the time domain.

The signal frequency after the shaping filter is still not
modulated and is named baseband signal. Considering that the
signal will be fed to an intermediate frequency (IF)
demodulator, it is required to shift the baseband signal to the
IF frequency using a mixer.

In the mixing process (Fig. 2), I and Q signals are
multiplied by cosine and sine signals with a reference
frequency to shift the baseband to the required IF. In the
Python implementation, the cosine and sine signals are
generated using look up tables. After the mixing process, both
I and Q signals are summed to generate the quadrature IF
signal.

B. 16-QAM Demodulator Implementation in Python

The signal generated by the modulator block in the
previous section passes by an Additive White Gaussian Noise
(AWGN) channel model. At the input of the demodulator the
signal is defined by the follow expression:

𝑠(𝑡) = ൣ𝑎ூ cos(2π𝑓௖𝑡 + θ) + 𝑎ொ sin(2π𝑓௖𝑡 + θ)൧ + 𝑛(𝑡) (3)

where 𝑎ூ and 𝑎ொ are the shaped signals in-phase and in
quadrature, respectively, 𝑓௖ is the carrier frequency, and 𝑛(𝑡)
is the AWGN. For this model, phase 𝜃 will be considered
zero.

The mixer is the first block of the demodulator presented
in Fig. 3. By trigonometric relations, the product of the signal
(3) with a cosine with the same frequency will generate back
the I signal with two components, one centered at zero
frequency (baseband), and another centered at two times the
carrier frequency, as shown in (4). Mixing 𝑠(𝑡) in parallel
with a sine will result the Q signal, with similar characteristics.

𝑑ூ(𝑡) = 𝑠(𝑡) ∗ cos (2π𝑓௖𝑡)

 𝑑ூ(𝑡) =
௔಺

ଶ
[1 + cos(4π𝑓௖𝑡)] +

௔ೂ

ଶ
[sin(4π𝑓௖𝑡)] + 𝑛(𝑡) (4)

After a low pass filter (LPF), the high frequency
components are eliminated, (5).

 𝐿𝑃𝐹[𝑑ூ(𝑡)] =
௔಺

ଶ
+ 𝑛(𝑡) (5)

A matched filter is implemented after the low pass filter.
This filter has a very important purpose in the demodulation
process. Through a convolution of the signal with a template,
the signal to noise ratio (SNR) is increased. The template used
is equal to the impulse response of the shaping filter
introduced at the modulator.

According to Haykin [4], the relation signal to noise of the
peak of a pulse in the matched filter depends only of the
relation between signal energy and the spectral density power
of the AWGN in the filter input. The bit and symbol average
energy can be obtained from the amplitudes of the
constellation symbols, and the noise density power is the
variance of the gaussian distribution, i.e. the square of the
standard deviation [5].

The SNR is defined by the ratio between bit energy (𝐸௕)
and noise density power (𝑁௢) using (6) :

 𝑆𝑁𝑅 =
ா್ோ

ே೚஻
 (6)

where R is the bit rate, and B is the bandwidth [6].

Fig. 2 - Modulator block diagram.

Fig. 3 - Demodulator Diagram Block.

The next process is to sample the signal at its peak. The
difficulty is to know when this peak happens. There are
several algorithms to synchronize and identify the peak for the
symbol detection. In this demodulator, the Gardner Algorithm
is implemented [7].

 The Gardner algorithm is based on the follow equation:

𝑒 = {𝑥[𝑛𝑇] − 𝑥[(𝑛 − 1)𝑇]} ∗ 𝑥 ቂ𝑛𝑇 −
்

ଶ
ቃ (7)

where 𝑇 is the sample period and 𝑛 is the iteration number.
This algorithm analyzes the synchronization word at the
beginning of the reception and detects which samples
correspond the symbol’s peak.

If the result of (7) is smaller than zero, a timing advance is
required for the next iteration, if the value is larger than zero,
a timing delay is required. The zero result means that the
exact value of samples between the symbol peaks was found.
Timing advance and delay are made by incrementing or
decrementing the variable 𝑇.

When the algorithm finds the intervals between symbols,
the down-sampler block samples the input signal and
generates an array with the symbol’s values.

Using the same codification as the mapper block array at
the modulator, the amplitude symbols are converted to the
bits they represent. At this moment, I and Q vectors are
defined. Since the I vector represents the even bits and the Q
vector represents the odd bits, the bit word is combined back,
and the bit stream is found.

IV. VHDL IMPLEMENTATION

A. 16-QAM Modulation Implementation in VHDL

The VHDL version of the modulator is implemented
according to the same block diagram presented in Fig. 2. It
starts splitting the data into 4-bit arrays by using 4 latches.
The mapper block takes both odd and even bits and use a look
up table (LUT) to transform the numbers in fixed point-
numbers of 8-bit 2's complement, as assigned in the python
version. The clock in the LUT is two-times faster, and the
look up table is presented as below.

002 → −110 → 110000002; 012 → −0.33310 → 111010112;

112 → +110 → 010000002; 102 → +0.33310 → 000101012;

The first bit represents the signal, the second the integer
part and the last 6 bits the decimal part. In this way, the
numbers are initially truncated binarily to 8 bits. Since
“00010101” represents 0.328 and not 0.333 it may require an
increase in the number of bits depending on the achieved
performance of the modulator.

To prepare for the SRRC shaping filter, the symbols go
through an up-sampler with a factor of 16. It should be
observed that the clock needs to be 32 times faster than the
data input. The SRRC block is still under development. In the
VHDL implementation there is an additional block which is
the clock generation.

V. SIMULATION RESULTS

A. Python modulator implementation

A SRRC filter with 0.35 roll-off factor was implemented
in the shaping filter block, Fig. 2.

 In Fig. 4 (a), the spectrum of the signal at the point “D”
in Fig.2, and in Fig.4 (b) the spectrum at the point “E” in Fig.
2 are presented. It is possible to observe that the filter not only
shapes the signal, but also filters the spectrum. In this
implementation, the symbol rate was defined as 1 MHz,
hence with a symbol duration of 1 µs. The shaping filter
ensures that the current symbol has an amplitude close to zero
at the peak of the next symbol, which reduces the probability
of intersymbol interference.

Fig. 5 shows the signals I (a) and Q (b) after convolution
with the filter impulse response, at the “E” point in Fig. .

 In the next step, presented in Fig.6, the I (a) and Q (b)
signals are mixed with the 2-MHz sine and cosine clocks and
summed to generate the IQ modulate signal (c).

B. Python demodulator implementation

 The average bit energy was calculated based on the
distance of the symbols from the center of the constellation.
The average bit energy is 0.278 µJ. In this simulation, the bit
rate is 4 Mb/s and the bandwidth of the signal is 1 MHz. So,
an AWGN with variance of 35.512n is necessary for a SNR
of 15dB according to (6).

Fig. 4 - Comparison between the frequency spectrum of the

signal before (a) and after (b) the shaping filter.

Fig. 5- Signals I (a) and Q (b) after the convolution with the

SRRC filter

When the signal gets to the demodulator, a mixing process

is executed, resulting in a signal with multiple frequencies as
shown in (4). In this modeling, the sine and cosine waves
have the same frequency and phase as the modulator. In the
future, this limitation will be removed using a phase detector.
An LPF with cut off frequency of 1 MHz is implemented after
the mixer to acquire these signals in baseband frequency.

The I and Q signals pass through a matched filter to
increase SNR, also increasing the amplitude. Comparing Fig.
5 with Fig. 7, it is possible to notice that the first symbol was
not accounted. Since it is a recursive filter it loses the first
samples.

In Fig. 8 are the resulting constellations at the output of
the modulator (a) and at the output of the demodulator (b),
obtained by sampling the output of the matched filter using
Gardner’s Algorithm (7).

C. VHDL Simulation Results

 After the mapper was implemented in VHDL the data
was imported to Python and compared with the mapper
model, (1) and (2). Is possible to see in Fig. 9 (c) a difference
of 5% between the two implementations.

VI. CONCLUSIONS

In this work, 16-QAM modulator and demodulator are
modeled in Python aiming to a future VHDL design. The
main parts of the system were discussed and simulated in
detail. The Python results can be used to check VHDL

performance. A phase detector block still needs to be
developed to synchronize receiver phase to the input signal
received from the modulator. The initial blocks of the
modulator were implemented in VHDL. The results obtained
are in good agreement with the python model.

ACKNOWLEDGMENT

 The Authors would like to thank FAPERGS and Unisinos
University.

REFERENCES

[1] B. Razavi, RF microelectronics. Prentice Hall, 2012.

[2] “scikit-commpy · PyPI.” https://pypi.org/project/scikit-commpy/

(accessed Jun. 20, 2020).

[3] “scipy · PyPI.” https://pypi.org/project/scipy/ (accessed Jun. 20,

2020).

[4] S. Haykin, Sistemas de comunicação : analógicos e digitais.

Bookman, 2004.

[5] L. J. Ippolito, “Error Functions and Bit Error Rate,” in Satellite

Communications Systems Engineering, Chichester, UK: John

Wiley & Sons, Ltd, 2017, pp. 423–425.

[6] K. Schiphorst, Roel; Hoeksema, Fokke; Slump, “Bluetooth

Demodulation Algorithms and their Performance,” IEEE Trans.

Circuits Syst. Ii Analog Digit. Signal Process., 2002.

[7] F. M. Gardner, “A BPSK/QPSK Timing-Error Detector for

Sampled Receivers,” IEEE Trans. Commun., vol. 34, no. 5, pp.

423–429, 1986, doi: 10.1109/TCOM.1986.1096561.

Fig. 7 – I(a) and Q(b) signals after the LPF and Matched Filter.

Fig. 6 - Mixed signals I (a) and Q (b) and IQ (c).

Fig. 9 – Mapper output in VHDL (a), in Python (b) and data

comparation between the two platforms (c).

Fig. 8 - Comparation between the modulator (a) and demodulator

(b) constellation. SNR = 15dB.

