
Template Matching-Based Eye Tracking Technique
With FPGA for Foveated Rendering

Gabriel Ayres de Oliveira
Faculdade de Engenharia

Universidade Federal de Juiz de Fora
Juiz de Fora, Brasil

gabriel.oliveira@engenharia.ufjf.br

Estêvão Coelho Teixeira
Faculdade de Engenharia

Universidade Federal de Juiz de Fora
Juiz de Fora, Brasil

estevao.teixeira@ufjf.edu.br

Abstract—Eye tracking using foveated rendering is needed to
reduce the overhead of graphics processing on host computers. In
an attempt to accelerate the process of pupil finding, we focus on
using a template matching technique to estimate the user’s gaze
position. The implementation is done on specialized hardware
apart from the host machine, in this case an FPGA in an effort
to offload these calculations to a dedicated hardware. The results
show a slow but accurate process which uses a very small number
of logic units.

Index Terms—eye tracking, template matching, foveated ren-
dering, FPGA

I. INTRODUCTION

Eye tracking has many applications, such as studying how
the human gaze reads a wall of text or an image, or how users
navigate a computer program interface [1]. Lately, however,
eye-tracking has been used in virtual reality headsets, which
have been advancing rapidly in the past few years. One
of the most prominent advances in the field has been on
increased integrated display’s pixel density. This is in order
to make the output as indistinguishable as possible to what
the human eye would see. Given how graphic processing
unit (GPU) advancements have been lagging behind, those
devices are hindered by a hardware that cannot render frames
as fast as needed. Foveated rendering then comes into play
by generating those frames with areas of higher and lower
definition, mimicking the physiology of the human eye which
increases the process’ efficiency. Eye tracking goes hand-in-
hand with foveated rendering as the eyes rarely have their gaze
fixed in one point only.

There are different ways to track a user’s gaze. Two exam-
ples are Electro-OculoGraphy, which needs physical contact
to the user’s skin, and Video-OculoGraphy which captures the
eye movement by using a camera [2].The Video-OculoGraphy
technique was chosen for the present investigation, imple-
menting it as an FPGA paired with a camera, and using
a template matching [3] technique to locate the pupil. The
method present here differs from previous publications, as
those use different ways to track the user gaze (e.g. segmenting
the pupil using binary images and ellipse fitting) [4]. The
method also differs from other published works who also apply
several mathematical transformations as to make the pupil

Fig. 1. A cross section of the human eye showing the fovea, a small groove
on the back of the eye.

easier distinguishable on the expense of a considerable amount
of logic units [5].

In Section II is explained what is foveated rendering and
how it works. In section III the image correlation process
is detailed. In section IV the implementation is laid out
explaining how the system was put together followed by how
the parameters were chosen given the development board’s
imposed limitations. This section also explains how the tem-
plate was stored in subsection B, while on subsection C it
is explained, with the support of a flowchart, how the final
system works. On the results section, the findings are briefly
discussed. Finally, the conclusion is presented.

II. FOVEATED RENDERING

The human eye has particular properties that make rendering
images in their full resolution a waste of computational
resources. The fovea is a small region in the back of the eye
where images are projected as illustrated by Fig. 1 [6]. This
area is filled with photoreceptors named ”cones”. Those appear
in three different types which respond to the wavelengths
of the three primary colours. The cone count in the fovea
decreases dramatically from the center towards its edges,
which consequently for the human vision means the images
formed away from the center have decreased fidelity [7].

The high fidelity area of the human vision spans five degrees
from its center, which is quite small given the total area

Alessandro Girardi

Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020

Fig. 2. The template is overlaid and then moved over all possible positions
of the scanned image.

spanned of around 135 degrees vertically and 160 degrees
horizontally. Rendering images with different fidelity levels
based on the user gaze lifts some of the computational strain
put on the GPU, which allows for increasing the frame rate.
This type of approach has shown significant increase of five
to six times the original frame rate [8].

III. IMAGE CORRELATION

Template matching consists on overlaying parts of the
original image with a template as to evaluate if it is present on
this image. A similarity score is calculated for each possible
position of the template. In Fig. 2 it is shown how the template
is moved over the original image.

This technique was chosen for its simplicity of implemen-
tation on hardware by using Verilog modules and for yielding
consistently good results. For any pixel with indexes (x, y) the
correlation score C(x,y) between the template and the original
image pixels overlaid by it, is given by

C(x,y) =

xmax∑
x=0

ymax∑
y=0

(1023− |Pimage(x, y)− Ptemplate(x, y)|)

(1)
where Pimage(x, y) and Ptemplate(x, y) are the pixels from

the image and template respectively that are analyzed two by
two. Here, 1024 is an arbitrary value, which is the maximum
value a pixel captured by the camera can have. If these two
pixels are identical, their comparison equals 1024, otherwise
if these two pixels are on complete different ends of their
possible values, the result is zero.

The correlation score is the sum of all the pixels likeness.
The maximum value of the correlation depends on the size
of the template. A picture that is totally different from the
template will receive the minimum score possible which is
zero, on the other hand a picture that is exactly the same as
the template will receive a score denoted by

Cmax(x,y) = 1023 ∗ xmax ∗ ymax (2)

where xmax and ymax are the maximum coordinate values,
which is the template’s resolution. In this case with the

Fig. 3. Control and data connections between the camera and the FPGA.

Fig. 4. The camera setup with the attached IR LED ring, connected to the
FPGA.

template’s resolution set to 256x256 pixels, the maximum
correlation score is 67,043,328 while the minimum is zero.

IV. IMPLEMENTATION

The project was implemented using a Terasic DE2-115. This
development board contains an Altera Cyclone IV FPGA [9].
The camera used is a TRDB-D5M, which supports resolutions
up to 1024x768 pixels at 30 frames per second (fps) [10]. For
this investigation a resolution of 640x480 pixels was chosen.
The final calculated pupil position is shown on the VGA output
overlaid onto the original image.

All of the camera parameters are set up by the FPGA using
the I2C bus. The camera feeds the FPGA with the pixel values
of the captured image using a 10-bit parallel data bus in sync
with the horizontal (Hsync), vertical (Vsync) and pixel clock
(PXLclk) lines as illustrated in Fig. 3. There is an infrared
LED ring positioned around the camera that makes the whole
picture brighter except the pupil, without blinding the user.
The setup for the test is shown in Fig. 4.

A. Parameter definition

Since the image correlation method does not require a full
colour image input, each pixel is saved as a 10-bit gray scale
value. This choice reflects the pixel size outputted by the
camera (10 bits for each colour) which is then converted to

Fig. 5. The template as it is saved on SRAM and its scaled output.

gray scale using the International Telecommunications Union
(ITU) guidelines [11]. The SDRAM is already being used as
a frame buffer to show the images on the VGA interface. The
calculations then are done with the entire frame being stored
on the next available memory, the SRAM. Each one of the
pixels is saved in one memory position. Although this may
appear wasteful given the word size of this particular memory
being 16 bits, mapping pixels this way requires one memory
access per pixel. The total size of a gray scale frame stored is
expressed by Sframe in Megabytes.

Sframe =
640× 480× 16

8× 210 × 210
= 0.58MB (3)

Which is roughly 30% of the available SRAM memory for
the DE2-115 board. This current implementation runs at a
clock speed of 50 MHz.

B. The template

In a way to accelerate the process, the template to be
compared with the original image is not stored in the SRAM.
Doing so would mean that all the comparisons would take at
least two SRAM accesses, thus doubling the time it takes for
the process to complete. The alternative chosen here was to
store the template as registers on a separate Verilog module.
Saving a full image this way would take too many logic
elements available on the FPGA used. The alternative was
to store a smaller image and scale it to the desired size. The
16x16 pixels image chosen is then upscaled to a full 256x256
pixels image, which is then used as the template to correlate
with different parts of the original image. The original template
and its scaled version is shown in Fig. 5.

C. System Architechture

Two verilog modules are the center piece of the process. The
first performs the correlation by comparing the pixels from
the base image and the template, reading from the SRAM and
from the template module. It starts the process with a position
received from the second module and returns the correlation
score for that position. The second module is tasked with
controlling the positions, passing them to the first, and to

Fig. 6. Different eye positions with their calculated center shown as a red
dot.

record which one of those has the biggest score. The flowchart
presented by Fig. 7 elaborates a bit more on this operation,
where (X,Y) represent the position the correlation should start
on and (cX,cY) the index of each pixel that is being compared.

Other modules present are the SRAM Controller, which
handles the writings and readings of the searched frame and
the Conversion module, which converts the full colour image
to a grayscale representation.

V. RESULTS

The proposed method was capable of successfully finding
the pupil position. The red dots mark the calculated center on
Fig. 6 for different eye positions. White dots are simply the
reflection of the IR LEDs, which did not interfere with the
measurements.

The time needed to parse one frame was 6 minutes and
43 seconds. One of the strengths of this method is a small
usage of the FPGA’s total logic units for the synthesized design
which, including the modules for the camera set-up, SRAM
controller and others, use 2292 logic elements corresponding
to 7% of the total available. This is a very compact design
when compared to other available methods, such as [12] who
uses 39,914 logic units, corresponding to 76% of the available
logic units. For embedded applications, the small usage of
logical units means a more power-efficient system.

Fig. 7. The system’s correlation flowchart.

VI. CONCLUSION

This paper presents a template matching-based eye tracking
technique for foveated rendering using an FPGA. Although the
process takes a considerable time, it is very efficient in terms
of logic units usage, meaning that the speed can be improved
by deriving a parallelized solution. As the camera is very
close to the user’s eye, improvement could also be achieved
by halving the resolution of the image and the template which,
should increase the overall speed by 16 times. For a real-time
application, the image parsing should not last more than the
time the system needs to generate a frame. For an output of
30 fps, for example, the entire process should not take more
than 33.33 milliseconds. With the proposed modifications the
results should approach the required time frame.

REFERENCES

[1] W. Barfield, Virtual environments and advanced interface design. New
York: Oxford University Press, 1995.

[2] Duchowski, Andrew T. Eye Tracking Methodology: Theory and Practice.
Cham: Springer, 2017.

[3] Brunelli, Roberto. Template Matching in Computer Vision: Theory and
Practice. Oxford: Wiley-Blackwell, 2009.

[4] Yan, Bei, Xigong Zhang, and Lifeng Gao. “Improvement on Pupil
Positioning Algorithm in Eye Tracking Technique.” 2009 International
Conference on Information Engineering and Computer Science, 2009.
https://doi.org/10.1109/iciecs.2009.5363013.

[5] Li, Xiaokun, and William G. Wee. “An Efficient Method for
Eye Tracking and Eye-Gazed FOV Estimation.” 2009 16th IEEE
International Conference on Image Processing (ICIP), 2009.
https://doi.org/10.1109/icip.2009.5413997.

[6] Kolb, Helga. “Simple Anatomy of the Retina.” Sim-
ple Anatomy of the Retina. Accessed May 25, 2020.
https://webvision.med.utah.edu/book/part-i-foundations/simple-
anatomy-of-the-retina/.

[7] Strasburger, H., I. Rentschler, and M. Juttner. “Peripheral Vision and
Pattern Recognition: A Review.” Journal of Vision 11, no. 5 (January
2011): 13–13. https://doi.org/10.1167/11.5.13.

[8] Guenter, Brian, Mark Finch, Steven Drucker, Desney Tan, and John
Snyder. “Foveated 3D Graphics.” ACM Transactions on Graphics 31,
no. 6 (2012): 1–10. https://doi.org/10.1145/2366145.2366183.

[9] TERASIC.DE2-115 User Manual. [S.l.], 2010. Rev. 1.02.
[10] TERASIC. TRDB-D5M 5 Megapixel Digital Camera Development Kit

User Manual.[S.l.], 6 2017. Rev. 3.
[11] ITU-R.Studio encoding parameters of digital television for standard 4:3

and wide-screen 16:9 aspect ratios. [S.l.], 3 2011.
[12] Kim, Dong-Kyun, Jun-Hee Jung, Thuy Tuong Nguyen, Dai-Jin Kim,

Mun-Sang Kim, Key-Ho Kwon, and Jae-Wook Jeon. “An FPGA-
Based Parallel Hardware Architecture for Real-Time Eye Detection.”
JSTS:Journal of Semiconductor Technology and Science 12, no. 2
(2012): 150–61. https://doi.org/10.5573/jsts.2012.12.2.150.

