
Memory-Aware, Low-Power and High-Throughput
AV1 FME Interpolation Architecture

William Kolodziejski, Robson Domanski, Marcelo Porto, Bruno Zatt, Luciano Agostini
Federal University of Pelotas (UFPel) - Pelotas, Brasil

Video Technology Research Group (ViTech), Group of Architectures and Integrated Circuits (GACI)
{wkolodziejski, radomanski, porto, zatt, agostini}@inf.ufpel.edu.br

Abstract—The AV1 implement several complex tools, such as
the Fractional Motion Estimation (FME), which defines 90 differ-
ent interpolation filters. This paper presents an optimized approx-
imate architecture for the AV1 FME interpolation filters, reaching
real-time interpolation for UHD 8K@30fps in a memory-aware,
low-area, and low-power design. The architecture was synthesized
for a 40nm TSMC standard-cells technology allowing a memory
bandwidth reduction of 59.5% in comparison with state-of-the-
art solutions. It reaches power gains of 83.4% when compared
to a precise architecture and 7.1% when compared to a previous
work of our group. The area reduction is of 84.6% and 41.8%
when compared to the precise version and to our previous work,
respectively. The approximation leads to a small coding efficiency
degradation of 1.58% in BD-BR.

Index Terms—approximate computing, interpolation, frac-
tional motion estimation, video coding, AV1

I. INTRODUCTION

THE advent of the COVID-19 pandemic has pushed up
even more the use of digital videos, which was already in

great increase over the last years. One clue of this assumption
is the decision of Netflix, Amazon Prime, and YouTube to
reduce the video quality to guarantee the quality of service
[1]. Also, [2] estimated that by 2022, digital video content
would be responsible for the traffic of about 77.49 EiB/month
(1 EiB is 260 bytes), meaning approximately 82% [3] of the
global Internet traffic, which may be underestimated since no
pandemic was in sight in that moment. Under this scenario,
video compression is being used like it never was before,
and this implies in the necessity to improve the current video
encoders, in order to reduce the power dissipation and time
consumed during the video compression process. One of these
video encoders is the AV1, released in 2018 by AOM.

One of the most used AV1 tools is the Fractional Motion
Estimation (FME), counting with 90 Finite Impulse Response
(FIR) filters [4], that requires samples fetched from the mem-
ory. Since the calculation is repeated multiple times during the
whole coding process a large memory bandwidth is required.

This paper presents a dedicated memory-aware, low-power
and high-throughput hardware design for the AV1 FME inter-
polation able to process up to UHD 8K@30fps, supporting all
filters and block sizes. The method used to develop this archi-
tecture consists on the proposal of an optimized combinational
multiplierless multi-filter solution. The solution approximates
the filters coefficients to hardware-friendly values and reduces

the number of taps whereas sustaining the compliance with
the AV1 FME specification.

II. BACKGROUND AND RELATED WORKS

The inter-frame prediction step of the AV1 is composed of
the Motion Estimation (ME) and Motion Compensation (MC)
steps. The ME finds, in a list of previously encoded frames,
the most similar block to the current one and then generates a
Motion Vector (MV) indicating the frame and the position of
this block. Then, the MC uses the generated MV to reconstruct
the predicted block. This predicted block is required because
the differences between the original block and the predicted
one (a.k.a. residues) must be considered to preserve the video
quality. The ME can be further divided into Integer Motion
Estimation (IME) and Fractional Motion Estimation (FME). In
many cases, the block found by the IME does not satisfactorily
match the current block and this can be improved using the
FME. This tool is responsible to refine the selected MV using
fractional (sub-pixel) positions. The use of fractional positions
allows for a better matching in the prediction process, reducing
the residues and increasing the encoding efficiency.

To perform the interpolation, the AV1 FME uses a total of
90 FIR filters, organized in six families of 15 filters each (some
are divided by number of taps): (i) Regular - Lagrange-based
filter with 6-tap or 4-tap (15 filters in each); (ii) Smooth -
Hamming Window-based filter with 6-tap or 4-tap (15 filters
in each); (iii) Sharp - Direct Cosine Transform-based filter
with 8-tap; (iv) Bilinear - 2-tap filter used in fast operations.
Among the current video codecs, the AV1 uses the largest
number of FIR filters in the FME interpolation process. The
VVC, for example, uses 78 filters [5]. The AV1 FME filters
have from 2 up to 8-taps, achieving an accuracy of 1/8 and
1/16 samples, for luminance and chrominance, respectively,
allowing for half, quarter, eighth, and sixteenth precision [4].

The interpolation is divided in two steps: (i) horizontal and
(ii) vertical filtering. This division exploits the potential sta-
tistical discrepancy between vertical and horizontal directions,
improving prediction quality [4]. The 4-tap filters are used for
4×4 block sizes and the 8-tap for larger block sizes.

Due to the fact that the AV1 codec was recently released,
limited set of works are found in the literature targeting
the encoder, specially employing approximate computing and
memory optimizations. A work, targeting the AV1 FME inter-
polation filters is presented in [6], but with no employment of



approximate computing nor memory optimizations and with-
out support for all the 90 defined filters. Two previous works
of our group focused in the AV1 interpolation filters. The
work presented in [7] is focused on the Motion Compensation
decoder step where the filters are applied to decode the frames
and then no approximation is allowed. The second work of
our group [8] applies approximate computing at the FME,
changing the filters coefficients to hardware-friendly ones, but
without reduction in memory bandwidth.

III. PROPOSED MEMORY-AWARE APPROXIMATIONS

In order to simplify the AV1 FME interpolation filter, the
first hardware-friendly approximation explored in this paper,
was to transform the required multiplications defined in the
FIR filters into shifts or shift-adds operations, using an approx-
imation of the original taps. Since there are 90 different filters
with up to eight taps, this simplification has a high impact in
terms of the required hardware resources.

The proposed approximation considered the fact that the two
central taps are the most important ones to the interpolation
result and defined their values as two shift-adds, improving the
precision. On the other hand, since the most peripheral taps
are less important, their values were defined using only one
shift. This means that the two central taps use a combination
of four powers of two to be generated whereas the other taps
are generated with only one power of two. A similar solution
was explored in our previous work [8].

Another approximation proposed in this paper is to reduce
the number of taps to a maximum of four in all FME
filters, mainly to reduce the memory bandwidth. Our pre-
vious work [8] only applied approximate computing at the
filter coefficients values, mainly focusing in reduce power
dissipation. The decision to reduce the taps to four was
based in experiments comparing a solution with six taps,
which showed limited impacts in coding efficiency. Therefore,
further reducing the taps provided important gains in memory
bandwidth reduction.

The solution presented in this paper brings some impreci-
sion to the results, as will be discussed in the next section,
but, on the other hand, it allowed an important memory
bandwidth reduction, together with an important reduction in
power dissipation consumption and used area.

Table I shows a comparison with some of the 90 AV1 FME
interpolation filters, highlighting the differences between the
precise and approximated tap values. Using the Sharp filter as
example, the original taps {−4, 12,−24, 80, 80,−24, 12,−4}
were converted to {−8, 84, 84,−32}. Regular, Smooth, and
Bilinear filters also suffered similar approximations. The co-
efficient values for each filter were manually set to the power
of two closest to the original values, whereas respecting the
hardware constraints imposed by the available shifters.

Other important observation from Table I is that the sum
of all imprecise taps of each approximated filter must be
as similar as possible to the sum of all taps of the precise
filter. This sum is 128 and allows a final division using a
simple shift operation whereas guaranteeing that the filters

TABLE I
EXAMPLE OF FILTERS COEFFICIENTS

Filter TAP Version Coefficients

Sharp
8 Precise {-4, 12, -24, 80, 80, -24, 12, -4}
4 Approximated {-8, 84, 84, -32}

Bilinear 2
Precise {56, 72}

Approximated {44, 84}

Regular

6 Precise {2, -14, 76, 76, -14, 2}
4 Approximated {-32, 84, 84, -8}

4
Precise {-12, 76, 76, -12}

Approximated {-32, 84, 84, -8}

Smooth

6 Precise {-2, 14, 52, 52, 14, -2}
4 Approximated {32, 44, 44, 8}

4
Precise {12, 52, 52, 12}

Approximated {32, 44, 44, 8}

gains are equal to 1 even with the approximations. In a very
few approximations (two cases), the sum of the taps is equal
to 124, due to the constraints we used in the hardware design,
but in all other the sums are exactly 128.

IV. EVALUATION OF CODING EFFICIENCY IMPACTS

The proposed approximations were evaluated in comparison
to the original filters using 9 video sequences from Mozilla and
Netflix data set [9]. The evaluation considered four CQs =
{20, 32, 43, 55} enabling all AV1 encoding tools. CQ stands
for Constant Quality and ranges from 0 (no quality loss) to
63 (maximum quality loss). The experiments were done using
the libaom, the AV1 reference software, version 2.0.0 [10].

The coding efficiency evaluation was done using the
Bjøntegaard Delta Bit Rate (BD-BR) [11] metric. This metric
indicates, for the same objective video quality, the percentage
difference of bit-rate required to represent a video. The closest
to zero, the more similar to the original video. Negative values
mean that less bits were required to represent the same result.
The experiments were done following the Video Codec Testing
and Quality Measurement [9].

Table II presents the results of coding efficiency of the
proposed approximations in comparison to the original filters,
grouping the videos by resolution. The first observation is
that the higher the video resolution, the lower tends to be
the approximation impact on BD-BR. In some cases (negative
values) the approximations can even increase the coding
efficiency. This was not an expected result, but may be justified
by the fact that every encoder decision affects the other tools
and heuristics, which can lead to hard-to-predict results.

The proposed approximations caused a small degradation in
coding efficiency and the results are as better as higher is the
video resolution. The worst results were reached for the Full
HD sequences and the average results for UHD 4K videos
are close to zero. Taking in account that Full HD is one of
the most common resolutions, the 2.74% degradation in BD-
BR is expressive, but still acceptable, especially for scenarios
where power and area are more important than quality, as the
case of mobile devices. When compared to our previous work
[8], which reached an average BD-BR of 0.54%, the novel



TABLE II
CODING EFFICIENCY RESULTS

Sequence Resolution Frames BD-BR (%)
Arena of Valor

Full HD 60

0.67
Market Place 2.46
Square and Time-lapse 2.62
Tunnel Flag 5.21
Foreman

UHD 4K 60

0.82
Coastguard -0.14
Cactus 1.28
Bar Scene -1.90
Boxing 2.06

Average
Full HD

-
2.74

UHD 4K 0.42
Overall 1.58

overall BD-BR results are slightly higher, but with important
improvements in memory bandwidth.

V. MEMORY-AWARE APPROXIMATE ARCHITECTURE

Figure 1 presents the proposed architecture, called Basic
Multiplierless Multi-filter (BMM), at filter level. This set of
shifters, adders and multiplexers is able to compute all the 90
AV1 approximated FME interpolation filters (one at a time).
Each A in Fig. 1 is an input sample to be multiplied by a
filter tap. Since the maximum number of supported taps in this
architecture is four, there are four inputs. The shifts and adds
are responsible to generate each approximate filtered value and
the multiplexers are responsible to select which shifter should
be used for each filter.

The first BMM operation over the inputs is a shift-left of
n bits. These operations are equivalent to multiplications by
2n. Since 90 different filters are supported by this architecture,
some values for n are re-used to represent different tap values.
The A0 and A3 input samples are processed only with a single
shift-left, implying in a higher imprecision level, as previously
discussed. On the other hand, the central input samples A1
and A2 are submitted to a lower level of imprecision, since
two shift-add operations are available to calculate both taps,
increasing their precision.

The output of multiplexers connected to A0 and A3 inputs
have an additional controlled complement-of-two operation
(C2 in Figure 1) to correct the results signal. The signal
inversion is used to generate negative taps and it is not applied
if a positive tap is required. Then, all outputs are added, and
the last step is a 7-bit shift-right to divide by 128 the previous
result, generating the interpolated sample.

Figure 2 presents the top-level Approximate Multiplierless
4-tap Filter (AM4F) architecture. Both H-BMM and V-BMM
are the very same filter presented in Figure 1, where the
difference in their names is only to highlight either is a
horizontal (H-BMM) or vertical (V-BMM) instance of the
Basic Multiplierless Multi-filter. Then, the H-BMM instances
are connected to the V-BMM instances through a shift-register-
chain of 4 positions. These positions correspond to the 4 BMM
inputs (As in Figure 1).

Fig. 1. Basic Multiplier-less Multi-filter (BMM).

The AM4F was designed to process 4×4 blocks, which is
the smallest block size supported by AV1. Since any bigger
block can be build up from 4×4 sub blocks, only by correctly
splitting the input matrix and overlapping the samples, the
architecture supports all AV1 block sizes, ranging from 4×4
to 128×128. However, both division of the input matrix and
combination of the output blocks are not processed by this
architecture, being necessary a different hardware.

The precise AV1 interpolation requires a matrix with 11×11
samples to interpolate a 4×4 block. Since always an extra
7 samples (vertical and horizontal) border is required to
interpolate any smaller block size, reducing the number of
filter taps, also leads to a reduction in these borders. Therefore,
since four taps where removed, 4 rows and 4 columns can also
be removed from this matrix, implying in a 7×7 matrix and
in a reduction of 59.5% in data fetched from the memory.

The architecture was designed to read one line of this 7×7
matrix at each clock cycle and, then, shift the registers until

Fig. 2. AM4F: Approximate FME Interpolation Architecture.



filling the chain (these shifts correspond to the combinational
distribution of the sample inputs, as done in the H-BMM).
The AM4F takes four clock cycles to start processing the
V-BMM instances and three clocks to finish the processing,
taking seven clocks to generate an interpolated 4×4 block.

Both the memory usage and memory bandwidth are highly
dependent of the whole AV1 hardware implementation, and
vary according to the video. Independently of the memory
technology, the 59.5% reduction is related to the number of
samples fetched from the memory on the FME interpolation
process, when compared to a standard-defined precise FME.

VI. SYNTHESIS RESULTS AND COMPARISONS

Three architectural versions of the AVI FME interpolation
were synthesized to allow comparisons: the approximate ar-
chitecture designed in this paper, a precise version without
simplifications and the previous design of our group, proposed
in [8]. The precise version uses multipliers and explore the
same idea of a multi-filter structure. All architectures follow
the same architectural template (presented in Figure 2) and
were described in VHDL and synthesized for a 40nm TSMC
standard-cells technology with 1.1V [12] using Cadence RTL
Compiler tool [13]. The power results were generated using
the default tool switching activity (20%). The gate count was
calculated based on 2-input NANDs size (0.9408µm2). The
frequency was defined as 686MHz since this is the required
frequency to process UHD 8K@30fps for the precise version.

Table III presents the synthesis results along with a com-
parison with related works. As discussed before, only three
related works were found in the literature reporting hardware
designs for the AV1 interpolation, i.e., [7], [6], and [8]. A fair
comparison with works [7] and [6] is not possible, since the
work in [7] is focused on the motion compensation (decoder)
and the work in [6] supports only the Regular filters family
(15 filters). Even in a more complex scenario, our architecture
reached an expressive lower area and power dissipation, even
with the required higher operation frequency. Our previous
work in [8] is the unique published work that can be fairly
compared with this work.

The comparison with the precise version showed that our
architecture uses 84.6% less area and dissipates 83.4% less
power than the precise version. When compared to [8], the
gains were of 41.8% in area and 7.1% in power. At this point it
is important to highlight that the power results considered only
the static and dynamic power of the designed hardware and

TABLE III
SYNTHESIS RESULTS AND COMPARISON WITH RELATED WORKS

Work Tech Tool
Freq.

(MHZ)
Gates
(K)

Power
(mW)

[7] TSMC 40nm 90 MC Filters 279.9 141.7 81.3
[6] STMicro 65nm 15 Regular Filters 344.8 270.4 130.7

Precise
TSMC 40nm 90 FME Filters

686.0 275.7 149.7
[8] 686.0 72.6 26.7

AM4F 686.0 42.2 24.8

did not consider the power reduction caused by the reduction
in the memory bandwidth.

VII. CONCLUSION

This paper presented an optimized approximate architecture
for the AV1 FME interpolation filters that can process up
to UHD 8K@30fps. This architecture is a memory-aware,
low-area, low-power, and high-throughput hardware design
exploring approximate computing which supports all 90 AV1
FME interpolation filters.

The original AV1 FME filter taps were approximated to
hardware-friendly values and the maximum number of filter
taps was limited to four. Besides important improvements
in area, and power, the proposed approximations allowed a
memory bandwidth reduction of 59.5% in comparison to the
state-of-the-art solutions. When considering a precise version,
our architecture is also able to reduce the area in 84.6% and
reach power savings of 83.4% (without consider the power
reduction generated by the memory bandwidth reduction), at
a cost of 1.58% in BD-BR.

Only a previous published work of our group allows a
fair comparison. In this case, the gains were 41.8% in area
and 7.1% in power (without consider the memory bandwidth
reduction), with a degradation of 1.04% in BD-BR.

REFERENCES

[1] T. I. Express. (2020, mar) COVID-19 impact: Streaming
services to dial down quality as internet speeds fall. [Online].
Available: https://indianexpress.com/article/technology/tech-news-
technology/coronavirus-internet-speeds-slow-netflix-hotstar-amazon-
prime-youtube-reduce-streaming-quality-6331237/

[2] Statista. (2019, oct) Global mobile data traffic 2017-2022. [Online].
Available: https://www.statista.com/statistics/271405/globalmobiledata-
traffic-forecast.

[3] Cisco. (2018, oct) Cisco visual networking index:
Forecast and methodology, 2016–2021 - cisco. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html.

[4] J. Han, B. Li, D. Mukherjee, C.-H. Chiang, A. Grange, C. Chen, H. Su,
S. Parker, S. Deng, U. Joshi, Y. Chen, Y. Wang, P. Wilkins, Y. Xu, and
J. Bankoski, “A technical overview of AV1,” Proceedings of the IEEE,
pp. 1–28, 2021.

[5] JVET. (2021, abr) VVC codec library. [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM

[6] D. Freitas, R. da Silva, I. Siqueira, C. M. Diniz, R. A. L. Reis, and
M. Grellert, “Hardware architecture for the regular interpolation filter
of the AV1 video coding standard,” Eusipco, 2020.

[7] R. Domanski, J. Goebel, W. Penny, M. Porto, D. Palomino, B. Zatt, and
L. Agostini, “High-throughput multifilter interpolation architecture for
AV1 motion compensation,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 66, no. 5, pp. 883–887, 2019.

[8] R. Domanski, W. Kolodziejski, M. Porto, G. Correa,, B. Zatt, and
L. Agostini, “Low-power and high-throughput approximated architecture
for AV1 FME interpolation,” ISCAS, 2021.

[9] N. W. Group. (2020, aug) Video codec testing and quality measurement.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-netvc-testing-09

[10] AOMedia. (2020, may) AV1 codec library. [Online]. Available:
https://aomedia.googlesource.com/aom/+/refs/tags/v2.0.0.

[11] G. Bjontegaard, “Improvements of the BD-PSNR model. itu-t sc16/q6,”
in 35th VCEG Meeting, Berlin, Germany, Doc. VCEG-AI11, 2008.

[12] TSMC. (2018, aug) 40nm technology. [Online]. Available:
http://www.tsmc.com/english/dedicatedFoundry/technology/40nm.htm.

[13] Cadence. (2018, aug) Encounter RTL compiler. [Online]. Available:
http://www.cadence.com.


