
Posit-based Spiking Neuron in an FPGA
Victor H. L. Silva∗, Jeferson F. Chaves∗, Rogério M. Gomes∗, Bruno A. Santos∗

∗Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG

Abstract—In this work, we designed a novel spiking neuron
circuit in an FPGA. Our low latency circuit is based on posit
arithmetic, an emerging format intended to succeed IEEE 754. By
proposing this hardware implementation using a new format for
floating point representation, we managed to balance accuracy
and the number of resources in circuitry. Furthermore, we
successfully validated our design reproducing neuron’s firing
patterns while reducing memory needs by 25% in contrast with
IEEE 754 based solutions. To the best of our knowledge, this is the
first design of this kind. We believe that this novel design could
offer new ground for computational neuroscience experiments.

Index Terms—Posit arithmetic, Izhikevich neuron model,
FPGA

I. INTRODUCTION

Computational Neuroscience has been yielding essential
insights into how the brain works. Models typically based on
neural networks are built to understand how higher functions
arise from interacting neurons [1]. A significant challenge in
the field is ensuring reproducibility in simulating complex
neural networks [2]–[4]. This situation led to recent efforts by
the research community towards proposing a rigorous method-
ology of increasing the correctness of simulation results in the
absence of biological experimental validation data [2]–[6]. As
Pauli et al. pointed out [7], this issue goes more profound
than the model specification itself. For example, the choice
of compiler, the order in which numerical operations are
executed, or the underlying hardware running the model can
lead to rounding errors. Hence, these options affect numerical
accuracy, which is critically important as even slight deviations
in the dynamics of individual neurons are expressed in the
dynamics at the network level [5]–[7].

Typically, there is a trade-off in simulations between ac-
curacy, network size, and simulation time. When accuracy is
more critical, simulations are commonly done in software with
the IEEE 754 floating point numerical format, which restricts
network size and/or simulation time. However, if network
size or simulation time is the primary concern, the solution
is typically a hardware implementation with a fixed point
numerical format, which compromises accuracy.

To address those issues, i.e., to circumvent the trade-
off above, we propose a hardware design of a biologically
plausible neuron model using a new floating point format. By
designing a hardware solution, we could explore parallelism
favoring network size and/or simulation time. Additionally,
using the Posit format as an IEEE 754 replacement for floating
point representation, we could maintain accuracy while having
a hardware friendly numerical pattern [8]. Finally, we choose
to use the Izhikevich neuron model [9], [10] because it is the

mainstream choice for simulating large-scale spiking neuron
networks.

To the best of our knowledge, this is the first design of
this kind, i.e., our effort is the only one to combine the
most computational efficient neuron model and the promising
new numerical format in an FPGA. Thus, we believe that
this novel design could offer new ground for computational
neuroscience experiments. It is also worth noting that previous
implementations typically use fixed-point representations and
implement different neural networks. However, as this work
proposes to use floating-point representation to simulate a
neuron model, the comparison with other works may not be
fair.

The remaining of this paper is organized as follows. In
Section II, we describe the Izhikevich neuron model and
the posit numerical format. Section III presents our proposed
design, its design process, and its validation. Finally, Section
IV summarizes and concludes the work.

II. BACKGROUND

In this section, we present a summary of the Posit floating
point format [8] and a brief introduction to the Izhikevich
neuron model [9].

A. Posit Arithmetic

Posit arithmetic or type-3 universal number (unum) is a new
format intended to replace IEEE 754 standard for representing
real numbers [8]. Posit numbers were designed to provide a
better dynamic range and more accuracy than IEEE standard
over the same bit field.

A posit format is defined as the pair (N, ES) composed
by the word size (N) and exponent size (ES), which actually
means the maximum exponent size. The Posit pattern has the
format as shown in Figure 1. Although the Posit format has
four components within the representation, e.g., Sign, Regime,
Exponent, and Mantissa, their length could vary at run-time.
The Sign bit, s, operates regularly as in conventional floats,
i.e., 0 for a positive number, 1 for negative numbers.

Regime bits are a sequence of either all 0 or 1, terminated by
an opposite bit. These bits and the exponent bits perform the

Fig. 1: Posit pattern



Fig. 2: Firing patterns generated by posit-based neuron circuit (gray curve). The red curve shows the difference from 32-bit
IEEE 754 implementation. Simulation for a time interval of 1 second.

same role as the exponent bits in a standard float. However, due
to its variable size, it manages to cover a relatively large range
of values. This feature allows Posit to have a good precision
close to one since few regime bits are used. On the other
hand, if the number is extremely large or extremely close to
zero many bits for the regime are used.

Finally, the Mantissa Bits, if available, are similar to the
normalized floating point. The value of a posit number is given
by the expression 1, where k represents a numerical meaning
for the regime bits [8]:

s ∗ (2(2
ES))k ∗ 2e ∗ f (1)

B. Izhikevich Neuron Model

The neuron model proposed by Izhikevich is a two-
dimension simplification of the Hodgkin-Huxley model and
can be described by equations 2 and 3 with an auxiliary after-
spike resetting represented by Equation 4:

dv

dt
= 0.04v2 + 5v + 140− u+ I, (2)

du

dt
= a(bv − u), (3)

if v ≥ 30mV, then
{

v ← c
u← u+ d,

(4)

where v is the membrane potential of a neuron; I is the input
current, u is the membrane recovery variable, a is the decay
rate of u, b is the sensitivity of u for sub-threshold fluctuations
of the membrane potential, c is the reset value of the membrane
potential after spike and d is the reset value of the variable u
after spike.

Izhikevich developed a model of spiking neuron that repro-
duces the behavior of real neurons very accurately, but with

much simpler equations and low computational cost, allowing
the simulation of networks with large numbers of neurons.
Izhikevich also showed in [10] the biological plausibility
and computational efficiency of his model and presented that
different types of cortical neurons can be obtained by tuning
the parameters a, b, c, and d of the model. In this work, we
approached some types of neurons modeled by Izhikevich,
whose behaviors can be seen in Figure 2.

III. METHODOLOGY

In this section, we show our proposed neuron circuit devel-
oped in three steps. First, we made a software implementation
of the Izhikevich neuron using the posit numeric format. Our
goal with this step was to verify the feasibility of reproducing
a neuron’s behavior with this new numerical format. Next,
we designed and validated the neuron circuit by comparing
its simulation results with the software results. Finally, we
synthesized the circuit for an FPGA to evaluate the required
resources.

Regarding the first step, i.e., the proof of concept of the
Izhikevich model using posit numbers, we based on the posit
arithmetic functions from the SoftPosit library [11], e.g.,
additions and multiplications, to implement our neuron model
in C Language. To solve the model’s differential equation, we
use Euler’s method iterating with a 1 ms time step, i.e., in each
iteration, our algorithm simulates 1 ms where new values for v
and u are produced from the previous values of these variables.
The simulation results reveal that it is possible to reproduce
neuron’s firing patterns using the posit format.

Figure 2 shows that our design was able to qualitatively
reproduce the behavior of real neurons using fewer bits (N=24,
ES=2) comparing to IEEE 754. Concerning accuracy, the
difference between the posit neuron and the IEEE 754 neuron
(32 bits) is negligible, as shown in the red line in Figure 2.
We also notice that it is possible to reduce even more the data



Fig. 3: Proposed circuit

size, i.e., the number of bits in the posit number, while still
reproducing the same qualitative behavior as shown in Table I.

In the next step, we designed the digital circuit. For that,
we used some posit arithmetic circuits (adders and multipliers)
from the PACoGen core Generator [12] to implement our
Verilog HDL design. This tool is a hardware generator for
Posit, also written in Verilog HDL, which produces blocks
that can be parameterized by the number of bits (N) and the
size of the exponent bit (ES).

The diagram in Fig. 3 shows our proposed neuron. The
circuit primary inputs are the initials values for neuron’s state
(v and u), the external current (I), and the clock signal, which
was used only to register the neuron’s state for the next
iteration. Everything else in the neuron is pure combinational.
Additionally, the design is as parallel as possible with no reuse
of any arithmetic block.

To validate our proposed circuit, we carried out a simulation
of the circuit with the ModelSim tool. In the testbench, we
contrasted the values of v, produced by the circuit, against
the software results (our neuron implemented in C Language
with SoftPosit library). We noted an unexpected divergence
in the results related to the timing of the spikes of the
neuron (variable v). After a detailed review of our Verilog
and C codes, we noted that the divergence was coming from
differences in how SoftPosit and PACoGen round numbers,
despite parameterizing both to use the same number of bits.

The cause of this problem is that SoftPosit uses the com-
puter’s 64-bit registers to store N-bit data. When performing
an arithmetic operation, the SoftPosit functions take advantage
of the 64-N extra bits to improve accuracy. On the other hand,
the PACoGen blocks are generated with exactly N-bits internal

TABLE I: Minimum number of bits needed to represent each
simulated neuron type

Neuron Number of Bits (Posit)
Tonic Spiking 18
Tonic Bursting 24
Phasic Spiking 18
Phasic Bursting 24

Mixed Mode 24
Spike Frequency Adaptation 24

TABLE II: Resources needed to implement the Izhikevich
neuron model in a Stratix V 5SEEBF45I4 FPGA

Number of bits (Posit)Resources 18 24 32
Logic utilization (in ALMs) 3,676 (1%) 4,834 (1%) 6,424 (2%)

Total registers 36 48 64
Total pins 57 (7%) 75 (9%) 99 (12%)

Total DSP Blocks 7 (2%) 7(2%) 14 (4%)

signals. To fix this issue, we chose to modify SoftPosit to use
only N-bit data as our goal is to produce smaller circuits.

Finally, with a validated circuit, we synthesized our design
for the Stratix V 5SEEBF45I4 FPGA. For that, we used the
Quartus Prime Standart Edition v.18.1.0 software with the area
optimization option enabled. Table II presents our results for
circuits with 18, 24, and 32 data sizes.

There are seven posit multipliers in this project, as shown
in Fig. 3, and the use of DSP blocks is directly associated
with PaCoGen’s multipliers. For example, for 18-bit and 24-bit
implementations, one DSP block was used for each multiplier,
thus requiring a total of seven DSP blocks, as shown in
Table II. For 32-bit implementation, two DSP blocks were
used in each multiplier, resulting in twice the resources used.

The results indicate encouraging perspectives. As shown in
Table II, our 24-bit posit neurons require at most 2% of the
FPGA resources. This outcome allows us to build a reasonable
network even without any unexplored and possible optimiza-
tions, e.g., pipelines, time multiplexing neuron’s simulations,
reducing even further the data size. Hence, there is much room
for substantial improvements in future works.

The proposed approach also optimizes memory usage. Con-
sidering that the simulation of each neuron results in a time
series of the variable ’v’, reducing the number of bits by 25%
(from 32 to only 24) can increase the length of time of the
simulation in the same proportion. On the other hand, if there
are no other restrictions (i.e., bandwidth, memory, available
resources in the FPGA), this reduction of bits can increase
the number of neurons implemented in the same amount of
memory.



IV. CONCLUSION

This work proposed to implement, embedded in FPGA, a bi-
ologically plausible neuron model with Posit Arithmetic using
a smaller number of bits. The results obtained showed that
the model of neurons with Posit arithmetic could reproduce
the same results obtained by the IEEE 754 standard with less
memory and the same precision.

These results open space for future work, such as optimiz-
ing the circuit designed with Posit arithmetic to use fewer
resources and reducing DSP blocks’ use. In this way, it will
be possible to implement spiking neural networks with even
more neurons, contributing to Computational Neuroscience
applications in a novel way.

REFERENCES

[1] N. Kriegeskorte and P. K. Douglas, “Cognitive com-
putational neuroscience,” Nature Neuroscience, vol. 21,
no. 9, pp. 1148–1160, 2018.

[2] R. A. McDougal, A. S. Bulanova, and W. W. Lytton,
“Reproducibility in computational neuroscience models
and simulations,” IEEE Transactions on Biomedical
Engineering, vol. 63, no. 10, pp. 2021–2035, 2016.

[3] M. Topalidou, A. Leblois, T. Boraud, and N. P. Rougier,
“A long journey into reproducible computational neu-
roscience,” Frontiers in Computational Neuroscience,
vol. 9, p. 30, 2015.

[4] S. M. Crook, A. P. Davison, R. A. McDougal, and H. E.
Plesser, “Reproducibility and rigour in computational
neuroscience,” Frontiers in Neuroinformatics, vol. 14,
p. 23, 2020.

[5] G. Trensch, R. Gutzen, I. Blundell, M. Denker, and
A. Morrison, “Rigorous neural network simulations: A
model substantiation methodology for increasing the
correctness of simulation results in the absence of exper-
imental validation data,” Frontiers in Neuroinformatics,
vol. 12, p. 81, 2018.

[6] R. Gutzen, M. von Papen, G. Trensch, P. Quaglio, S.
Grün, and M. Denker, “Reproducible neural network
simulations: Statistical methods for model validation
on the level of network activity data,” Frontiers in
Neuroinformatics, vol. 12, p. 90, 2018.

[7] R. Pauli, P. Weidel, S. Kunkel, and A. Morrison, “Re-
producing polychronization: A guide to maximizing the
reproducibility of spiking network models,” Frontiers in
Neuroinformatics, vol. 12, p. 46, 2018.

[8] J. L. Gustafson and I. T. Yonemoto, “Beating floating
point at its own game: Posit arithmetic,” Supercomput-
ing Frontiers and Innovations, vol. 4, no. 2, pp. 71–86,
2017.

[9] E. M. Izhikevich, “Simple model of spiking neurons,”
IEEE Transactions on Neural Networks, vol. 14, no. 6,
pp. 1569–1572, 2003.

[10] ——, “Which model to use for cortical spiking neu-
rons?” IEEE transactions on Neural Networks, vol. 15,
no. 5, pp. 1063–1070, 2004.

[11] C. Leong, Softposit library, Jun. 2021. [Online]. Avail-
able: https://gitlab.com/cerlane/SoftPosit.

[12] M. K. Jaiswal and H. K.-H. So, “Pacogen: A hardware
posit arithmetic core generator,” IEEE Access, vol. 7,
pp. 74 586–74 601, 2019.


