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Abstract—For the design of electronic circuits, the computer 

simulation proved to be important to improve the expected final 

results. Several simulation methods are currently being studied 

to obtain more accurate results that are consistent with the 

actual behavior of the circuits and seek the reduction of 

computational complexity. For some nonlinear circuits under 

multi-tone stimulation, it is enough to consider the harmonics of 

only the tone with higher amplitude. First the large signal 

analysis of the nonlinear circuit is done using the Harmonic 

Balance (HB) method. Thus, the circuit is linearized around the 

HB results using a small signal analysis, that can be the Periodic 

AC Analysis (PAC), to later apply the superposition of these 

results. Since the traditional PAC performs this linearization 

assuming the nonlinearities in the time domain, this article aims 

to investigate how to apply the same analysis by treating a 

polynomial nonlinearity in the frequency domain. 

Keywords—Harmonic Balance, Periodic AC Analysis, 

Polynomial Model, Linearization. 

I. INTRODUCTION 

Computational simulation is an indispensable step for the 
design of electronic circuits nowadays because, with the 
advancement of mathematical and computational methods, it 
is possible to obtain accurate simulations that predict the 
behavior of the circuit before the manufacturing stage. 
Therefore, it becomes viable to analyze different parameters 
in the circuits such as the values of components or input 
variables, to obtain the desired final results. 

For nonlinear circuits used in communication systems and 
also in power systems, the analysis of large signals is used to 
obtain the steady state response to these circuits containing 
periodic and independent sources of voltage or current in the 
time domain acting in n tones [1]. The Harmonic Balance 
(HB) method allows this analysis to be efficiently performed. 
Traditionally in HB, the nonlinearities of circuits are treated 
in the time domain, but polynomial nonlinearities of any order 
can also be treated in the frequency domain using HB [2]. For 
these two methods, it is considered that all independent 
sources are large to stimulate nonlinearities in the circuit, 
being possible to perform the analysis of large signals. 

For cases where it is necessary to consider the influences 
of the harmonics of the tone with higher amplitude, 
disregarding the action of the harmonics of the tones with 
lower amplitudes, it is possible to linearize the circuit around 
one tone and apply superposition as a way to reduce the 
computational complexity of the simulations [3]. Periodic AC 
Analysis (PAC) performs this linearization starting from the 
results obtained with the analysis of large signals that is 
usually traditional HB, where the nonlinearities are treated in 
the time domain. The contribution of this article is to perform 
a similar process but always treating polynomial 
nonlinearities in the frequency domain. 

II. HARMONIC BALANCE 

The HB is a numerical method used for the analysis of 
nonlinear circuits because it reduces the computational 
complexity of simulations by computing directly the steady-
state response. In this method, the circuit voltages and 
currents, represented by x(t), can be written as the sum of sines 
and cosines plus a constant X0, where XhS and XhC represent 
constant amplitudes, H is the number of considered harmonics 

in the analysis and c  is the fundamental angular frequency 

[4], as shown by the equation: 
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In HB, each time-varying circuit unknown is transformed into 
(2H+1) constant unknowns representing the sine and cosine 
amplitudes plus the constant X0. Consequently, each equation 
of the circuit should be transformed into (2H+1) equations that 
will be in the frequency domain. For dynamic elements, a 
square Jacobian matrix (ΩHB) has to be considered too, 
because the derivatives in the characteristic equations of these 
elements should be treated in the frequency domain [5]. For 
polynomial elements, the nonlinearities can be treated in time 
domain or frequency domain. 

A. Time Domain Analysis for Polynomial Nonlinearities 

For nonlinear elements, the treatment in time domain is 
done by dividing the fundamental period into (2H+1) equally 
spaced time intervals and:  

I) multiplying a matrix F that converts the 
frequency to time domain containing the values 
of time-varying sines and cosines by a column 
vector XHB with the constant X0 and the 
amplitudes of the sines and cosines; 

II) evaluating the nonlinearities in each one of these 
time intervals; 

III) multiplying the inverse matrix (F-1) that converts 
the time to frequency domain by a column vector 
resulted in II [5]. 

B. Frequency Domain Analysis for Polynomial 

Nonlinearities 

The analyses reported in this section are valid only for 
polynomial nonlinearities and the case study considered a 
second-order polynomial nonlinearity, but a similar procedure 
could be applied to higher polynomial orders. Given a signal 
x(t), the x2(t) can be represented by 

 2( ) ( ) ( ) ,= = y t x t f t Y  (2) 

where f(t)T is the transpose column vector of time-varying sine 
and cosine values and Y can be represented by summations of 
column vectors that manipulate in a linear way the constant X0 
and the amplitudes of the sines and cosines of x2(t) and have 
their behavior predictable for any value of H [2]. 



III. PERIODIC AC ANALYSIS 

The Periodic AC Analysis (PAC) is a method that 
linearizes circuits having as an initial response the results 
obtained with a large signal analysis, using HB, for example 
[4]. In PAC, the nonlinear components of the circuit are 
linearized to obtain the analysis of small signals, and the final 
result is the superposition between the large signal and the 
small signal analysis.  

In general, the linearization of the circuit is done by 
deriving the nonlinear equation with respect to the unknown 
to be analyzed [6], as the following equation shows: 
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where fLin(X) is the resulted linearized equation, fNL(X) is the 
nonlinear equation concerning the unknown X(t) and X0(t) is 
the initial response obtained by the large signals analysis [6]. 
The result of the linearization can be written as: 
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where g(t) is a vector of conductance amplitudes. After 
trigonometric manipulations to establish a relation between g 
and the functions of sines and cosines varying in time and 
considering that the source of small signals has an angular 
frequency ω2, fLin(X) can be written as: 

( ) ,= Lin SSf X COND V  (5) 

where COND is a conductance matrix defined by 
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(6) 

and Vss is the linearized element to be analyzed in small signals 
[7] defined by 
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where k = 2(2H+1). In (5), no elements vary in time and 
COND is the matrix with only constant numbers that depend 
on the constant amplitudes of g. 

 The equations shown previously in this section are valid 
for time and frequency domain linearization. The difference 
between the two analyses is the way the vector g is calculated 
as will be shown in the next two subsections. 

A. Time Domain Linearization for Polynomial 

Nonlinearities 

To obtain the elements of the vector g, the transformation 
matrices F and F-1, containing the values of time-varying sines 
and cosines obtained from the HB, are used. For any nonlinear 
function fNL of the circuit, the elements of the vector g are 
equal to: 
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Time
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where v = F.VTime and VTime is the vector with the resulted 
amplitudes of sines and cosines using HB with polynomial 
nonlinearities treated in time domain. 

B. Frequency Domain Linearization for Polynomial 

Nonlinearities 

To obtain the elements of the vector g, the transformation 
matrices F and F-1 are not used. The sines and cosines 
amplitudes are directly used to obtain the elements of the 
vector g. Specifically for fNL(v) = v2, the elements of the matrix 
g are: 

. .2 ,=Freq Freqg V  (9) 

and VFreq. is the vector with the resulted amplitudes of sines 
and cosines using HB with polynomial nonlinearities treated 
in frequency domain. 

IV. SIMULATION RESULTS 

The circuit used for the linearization in time and frequency 
domain is represented in Figure 1 and contains a saturable 
inductor (L) that represents a passive and nonlinear 
component. Duo to the nonlinearity considered in the analysis 
is a second-order polynomial, the voltage in the inductor as a 
function of time will be equal to the squared variation of the 
current IL. The circuit also has a resistor of 377 Ω and an 
independent sinusoidal voltage source (v) that has a peak 
voltage equal to 440 V, a fundamental frequency equal to 60 
Hz, and an angle discrepancy equal to 0° for the large signal 
analysis. For the small signal analysis, the equation of the 
voltage in the inductor was linearized and it was considered a 
sinusoidal voltage source with peak voltage equal to 5 V and 



a frequency equal to 120 Hz to stimulate in the circuit the 
second harmonic.  

 

Fig. 1. The circuit with a polynomial nonlinearity 

 To find the equations that describe the circuit behavior, the 
Modified Nodal Analysis (MNA) was used having as 
unknowns the nodal voltages Va, Vb, Vr and the currents of the 
circuit. The system of equations was solved by MATLAB® 
using the fsolve routine. Since Vr is equal to 0 V, because it is 
a reference voltage, the following system of equations can be 
obtained: 
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A. Large Signal Analysis 

For this section, 6 harmonics (H = 6) will be considered 
for time and frequency domain analysis in HB, because by 
increasing the value of H the methods are expected to be more 
accurate since normally the values of the amplitudes decrease 
as the order of the harmonic increases [4]. For H = 6, the 
matrix F will be a square matrix of order (2H+1 = 13) and 
each time-varying unknown in the circuit is transformed into 
13 unknowns. The system of equations in (10) has now 52 
unknowns and 52 equations. 

In the time domain analysis, the voltage in the inductor is 
defined by 

1 2. ( . ) ,−= 
Time LL HB IV F F X  (11) 

where XIL is the vector containing the 13 unknowns that 
represents the constant amplitudes of sines and cosines which 
refer to the current IL. For the frequency domain analysis, the 
voltage in the inductor is going to be  

.= 
FreqL HBV Y  (12) 

and Y is a column vector of 13 rows as a function of ωc, the 
constant X0, and the sine and cosine amplitudes representing 
IL

2. 

 The result of the current IL using the HB for time and 
frequency domain analysis and H equal to 6 is represented in 
Figure 2. The results are different because different forms of 
approximations in the calculations are inherent to the methods 
but show less discrepancy compared to the HB considering H 
equal to 2 or 4 [2]. For the treatment of nonlinearity in the 
frequency domain, an approximation occurs when 
disregarding the harmonics higher than H, so both IL and IL

2 
will have the same number of harmonics. For the treatment of 
nonlinearity in the time domain, the approximation occurs 

when discretizing the time and using the matrices F, with sine 
and cosine varying in time, and inverse F [2]. 

 

Fig. 2. HB results of the current IL with H = 6 

B. Small Signal Analysis and Superposition 

 For the small signal analysis, 3 harmonics (HL = 3) will be 
considered. The linear analysis containing (H/2) harmonics 
results in the COND matrix being completely filled with 
values from g0 to g12, increasing the accuracy of the analysis. 
Each unknown of the system in (10) is transformed into 2(2HL 
+ 1) unknowns. The system now has 56 unknowns and 56 
equations. The following equation represents the linearized 
voltage at the inductor and is valid for both methods: 

. . .=
PAC LL PAC IV COND X  (13) 

XIL contains the 14 unknowns representing IL, COND has 
order 14x14 and is formed by the values of g, which will be 
different for the time and frequency method of linearization, 
and ΩPAC is a Jacobian matrix obtained by deriving the vector 
with the sines and cosines in (7) with respect to time. 

 The vector g in the time domain linearization is equal to 

1[2( )],−=
TimeTime HBg F FX  (14) 

where 
TimeHBX is the 13 resulted amplitudes of sines and 

cosines using HB with polynomial nonlinearities treated in 
time domain. The current IL using PAC analysis in time 
domain is represented in Figure 3. The linear waveform has 
an amplitude of 13.26 mA and the PAC result represents the 
superposition of the nonlinear and the linear analysis. 

 

Fig. 3. PAC result in the time domain for IL 

 For the frequency domain linearization, the g vector is 
equal to 

.. 2 .=
FreqFreq HBg X  (15) 

.FreqHBX  is the 13 resulted amplitudes of sines and cosines 

using HB with polynomial nonlinearities treated in frequency 
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domain. The current IL using PAC analysis in frequency 
domain is represented in Figure 4, where the linear waveform 
also has an amplitude of 13.26 mA and the PAC result 
represents the superposition of the nonlinear and the linear 
analysis. 

 

Fig. 4. PAC result in the frequency domain for IL 

      In order to quantify the accuracy of the PAC in the time 
domain and the frequency domain separately, the following 
two analyses were compared for each method: 

I) apply the HB in a circuit with the two tones at the 
same time, having one voltage source with a peak 
voltage equal to 440 V and the other with 5 V in 
series. The fundamental frequency remains 60 
Hz and the small signal source of voltage remains 
at a frequency of 120 Hz to stimulate the second 
harmonic. In this analysis the equation for the 
inductor voltage remains nonlinear; 

II) apply the PAC and separately analyze the circuit 
with the large signal source with a peak voltage 
of 440 V and the linearized circuit with the small 
signal source with a peak voltage of 5 V. The 
final results of the PAC are the superposition of 
these two analyses and are shown in Figures 3 
and 4. 

     For the time domain analysis and H = 6, the Mean Square 

Error (MSE) between the HB with 2 tones and the PAC result 

is 1.0350x10-4 and the waveforms of these 2 analyses are 

represented in Figure 5. 

 

Fig. 5. IL using HB with 2 tones and PAC in time domain 

     For the frequency domain and H = 6, the same comparison 

was made and is shown in Figure 6. The MSE between the 

PAC result and the HB considering 2 tones is 1.1903x10-4. 

 

Fig. 6. IL using HB with 2 tones and PAC in frequency domain 

V. CONCLUSIONS 

 The article investigated how to apply PAC for second 
order polynomial nonlinearities in the frequency domain. This 
was done by changing the way the elements of the 
conductance matrix were acquired. For the time and the 
frequency domain, the same result for the current in the 
inductor of the linearized test circuit was obtained, even 
though the vector of conductance amplitudes was obtained in 
different ways. The final PAC result, which is the 
superposition of the linear and nonlinear analysis, changes 
because the nonlinear result using HB is different for the 
frequency domain and the time domain. Comparing the PAC 
result with the two tones HB, considering separately the time 
and frequency domain analysis, the lower MSE was obtained 
for the time domain, but both cases had errors to the fourth 
negative power of 10, which confirms that the results are 
similar. Therefore, the linearization using the PAC in the 
frequency domain for second order polynomial nonlinearities 
did not show significant differences compared to the 
linearization in the time domain. 
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