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Abstract—Simulations are an important part in the field of
electronics, allowing the study of circuit behavior. Two-tone
analysis is commonly used in non-linear situations, and in
this segment Periodic Alternating Current Analysis (PAC) and
Quasi-Periodic Steady-State Analysis (QPSS) stand out. The
first method requires knowledge of voltages and currents at all
time, in addition to using larger matrices in the simulation and
linearization. The second method, on the other hand, can be
simulated with sampled information. Thus, the present work
explores the performance of these different analyses with the
imposition of small and large signals for two distinct frequencies.
The study was carried out through programming with the Python
language, using the libraries that it provides. Throughout the
work, through graphical analysis, the possibility of applying
small and large signals in different scenarios using the QPSS
is explored, considering two distinct frequencies. The results for
QPSS confirm the possibility of applying the analysis of small
and large signals by varying the number of harmonics used for
each frequency. Furthermore, tests with the PAC method show
that, differently from the QPSS, the frequency is independent
for the imposition of small signals, as the results obtained will
be similar.

Index Terms—Quasi-Periodic Steady-State, Circuit Lineariza-
tion, Periodic Alternate Current

I. INTRODUCTION
Simulations are fundamental for the study and development

of electronic devices, as they allow observing the behavior of
the circuit in its daily application and in other extreme cases,
without the need for physical implementations and simulations
of environments, reducing production costs. Furthermore, it is
possible to perform optimizations on the schematic without the
need for full human attention. However, with the increase in
the complexity of the circuit and the frequencies that act on
it, the simulation becomes more computationally expensive,
since there is a greater number of unknowns to be solved and
a longer operation time. As a result, there is a demand for
methods to make more complex simulations viable [1].

The two-tone analysis is often used in non-linear circuits,
since two excitation signals with different frequencies generate
the inter-modulation products. Sometimes, an amplitude of
large signals for the first frequency and an amplitude of small
signals for the second frequency are considered in the analysis.
In radio-frequency circuits, for example, a sinusoidal signal
can be considered at the input, mixed with the signal of a
local oscillator with much smaller amplitude through a mixer
[2].

Thus, techniques for analyzing circuits were developed that
aim to obtain the response in two tones, where the Periodic
Alternating Current Analysis (PAC) and the Quasi-Periodic
Steady-State Analysis (QPSS) stand out. In the PAC, voltages
and currents need to be known at all times of the simulation
[3], the circuit is linearized around the operation in large
signals and harmonics are not considered for the tone in
small signals. In QPSS, the linearization of any amplitude
that composes the input signal is not necessary, with voltages
and currents being calculated only at equally spaced sampled
instants, whose amplitudes depend on multiple instants of the
smallest period between the input frequencies [3].

In this scenario, this work aims to explore procedures for
PAC and QPSS simulations in non-linear circuits. These are
fed by two sinusoidal sources with frequencies ω1 and ω2,
testing the possibilities of imposing small and large signals
for each of the frequencies.

The work is organized in order to initially discuss the state
of the art in Section I, with the presentation of the importance
of circuit simulation and the methods to be approached in the
two tone analysis. In Section II, the PAC method is presented
in more detail, explaining its logic and operating conditions.
In Section III, the QPSS method is discussed, along with its
elaboration and specifications. Section IV presents the non-
linear circuit in which the simulations will be carried out,
together with the results of the methods discussed in the work,
while Section V discusses the conclusions about the results and
topics covered.

II. PERIODIC AC ANALYSIS

The PAC consists in the application of the superposition of
the non-linear and linear analyses of the inputs in two tones
of the circuit [4], according to

vt2tones = vnl + vl, (1)
where vnl is the result of the non-linear analysis using
Harmonic Balance (HB), which must be done at the highest
amplitude tone [4], and vl is the portion resulting from the
linearization of the circuit.

When assuming that one of the tones is of small signals,
the PAC imposes that this tone does not present harmonics,
computing the respective harmonics to each frequency, mω1+
nω2, where m = 0,±1,±2, . . . , and n = ±1 [2].



The linearization of the non-linear elements of the circuit
is done by substituting their characteristic equations by linear
equations. This results in the gain vector g(t) with dimensions
k = 2∗(K1+1), varying in time as in HB. In the vector, K1 is
the number of harmonics considered in the non-linear analysis,
which must be twice as large as the number of harmonics, K,
considered in the linearized circuit analysis. This consideration
must be made so that it is possible to elaborate a completely
filled quadratic conductance matrix G, of dimension k [4].

Therefore, it is possible to rewrite the equation of the non-
linear element as

Ilin=
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(2)
It is also necessary to rewrite the Ω matrix, now considering

the frequency of the second tone together with that of the first
tone, according to (1) to obtain:

Ω2tones =
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(3)
In Fig. 1, a flowchart is presented in order to summarize

the PAC elaboration process.

Fig. 1: PAC Flowchart.

III. QUASI-PERIODIC STEADY-STATE ANALYSIS

In circuits excited by two tones, with ω1 < ω2, where the
system is in steady state, it can be assumed that the sampling
of a nodal voltage to be calculated in the circuit is periodic
[5]. Given these conditions and the fact that the sampling can
be represented by a Fourier series truncated in a few terms, it
is possible to develop the QPSS.

Each sampling point of the fundamental period is performed
at the instants τ1, τ2, . . . , τS , where S = 2 ∗K + 1, there K
depends of the number of considered harmonics of the lowest
frequency. Thus, a nodal voltage at each sampled point can be
written according to

vn(τs) = V0 +

K∑
h=1

VSh
sin(hω1τS) + VCh

cos(hω1τS), (4)

where V0, VSh
and VCh

are spectral constants given by QPSS,
with the numbers of constants dependent of S. Analysing
(4), it is possible to see the need for a relationship between
the instants of each sampled point, that is, an operation that
allows advancing each nodal voltage at the sampled point in a
period of the highest frequency, T . Thereby, the operation must
transform vn(τ1), . . . , vn(τS) in vn(τ1 + T ), . . . , vn(τS + T ).

This operation can be performed using the delay matrix [5],
where the matrix Γ−1, similar to Inverse Fourier Transform is
used. The matrix Γ−1 computes the coefficients of (4) in the
frequency domain, according to

Γ−1
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Therefore, for the values to be shifted by a period T , it is
necessary to rewrite Γ−1(T ) as
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(6)

Thus, the time domain elements can be shifted by first ap-
plying Γ to transform the time domain elements to frequency,
and then applying Γ−1(T ) and the delay matrix, as

vn(τ1 + T )
vn(τ2 + T )

...
vn(τS + T )
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 , (7)

and the delay matrix can be represented by:

D(T ) = Γ−1(T )Γ, (8)



where D∈RSXS . So that they can be used in any node, since it
only depends on ω1, τ and T . That is, the number of harmonics
considered for the fundamental frequency interferes with the
number of displacements made by D, thus also interfering
with its dimension.

In (7), to ensure that the circuit is in steady state according
to the precondition established for the operation of the QPSS,
the left side can be computed through transients of size T ,
where the number of points to be simulated depends on the
number of harmonics to be used for the highest frequency.
Then the number of points to be considered in each transient is
η = 2∗K1+1, because that depends on the highest frequency.

The QPSS allows both tones present in the analysis to be
large-signal, and their harmonics can be adjusted indepen-
dently. The QPSS construction flowchart is shown in Fig. 2.

Fig. 2: QPSS flowchart.

IV. RESULTS

To compare the described methods, the circuit shown in
Fig. 3 is used. The circuit is an approximation of a power
amplifier with envelope tracking [6] architecture .

Fig. 3: Test circuit schematic.
In Fig. 3, the fixed parameters are R1=1kΩ, RL=50 Ω, C1=

10 pF and C2=1 µF . The Vs source is a two-tone voltage
source, with different amplitudes and frequencies, where f1=1
GHz for the first tone, and f2=1.01 GHz for the second tone.
The non-linear current source INL depends on the voltage VA,
and its equation is given by

INL =
Isat(VA)

(1 +
Vsat

|VA|
)s

(9)

where the current saturation Isat=0.1 A, the voltage saturation
Vsat=1.8 V and the damping factor is s=5.

The simulations were performed in a Python programming
environment, using the Numpy, Scipy and Matplotlib libraries.
These libraries were explored in the performance of matrix
operations, in the use of the “fsolve” function to find the
solution of non-linear equations and in the elaboration of
graphs with the responses of the simulations. For the tests,
it was sought to vary the amplitudes A1 for the first tone and

A2 for the second tone in order to impose one large signal
and one small signal for the two frequencies handled by each
method. In the PAC, the tone to be considered as small signals
is the one that receives the smallest amplitude.

In QPSS, small signal enforcement takes place differently.
For a tone to be considered small-signal, the harmonic in
question must be unity, while the number of harmonics to be
considered for the large-signal tone must be chosen arbitrar-
ily. Therefore, when considering small signals for the lower
frequency tone, K = 1 and K1 = 100, and when considering
small signals for the higher frequency tone, K = 4 and K1 =
1.

Two cases were analysed to validate two results of the QPSS
and PAC, being made together the waveform resulting from a
transient analysis in one cycle of the circuit.

In a first case, it is expected to validate the imposition of
small signals for the slowest frequency of the circuit. For this,
in QPSS, amplitudes that distort the carrier frequency and keep
the envelope as a pure sinusoid are chosen, and thus the values
A1=5 V and A2=1 V were selected for the amplitudes.

In the second case, it is necessary to validate the imposition
of small signals for the fastest frequency, that is, a distorted
curve for the envelope, in which the carrier wave is a pure
sinusoid. Therefore, the value of 1 V was chosen for both
amplitudes.

In both cases, to validate the PAC, it was considered 1 V to
large-signal and 0.01 V to the small-signal and it was changed
the frequency that receives these amplitudes in each situation.
A. Imposition of small signals to the lowest frequency

In Fig. 4 the capacitor C1 voltage for the transient simu-
lation and the execution of the QPSS for small signals are
presented, applying lower (red dots) and higher frequency
(yellow dots). The bottom graph presents a macroscopic view
of the waveforms, while the top graph shows in more detail
the voltage behavior on a smaller scale.

Fig. 4: Waveforms with A1=5 V and A2=1 V with small
signal applied in the lowest frequency.

From Fig. 4, it can be seen that the small signals are not
valid for the carrier, since it is distorted. However, there is
validity to small signals to the envelope since it presents a
pure sinusoidal. Therefore, this analysis should also be valid



for the QPSS results, which is proven in Fig. 4: the imposition
of small signals to the envelope is accurate compared to the
transient (yellow dots), while the imposition of small signals
to the carrier results in inaccurate dots (red dots).

The Fig. 5 shows the voltage across capacitor C1 when
using the PAC method with small imposed signals for the
slowest frequency.

Fig. 5: Waveforms with A1=0.01 V and A2=1 V with small
signal applied in the lowest frequency.

When considering small signals for the slowest frequency,
similar results to the ones obtained when considering small
signals for higher frequencies are observed. Therefore, for the
PAC, it does not depend on which frequency is being used as
small signals, since similar values are obtained.
B. Imposition of small signals to the highest frequency

In Fig. 6 the capacitor C1 voltage for the second case
to be analysed is presented. The bottom graph presents a
macroscopic view of the waveforms, while the top graph
shows in more detail the voltage behavior on a smaller scale.

Fig. 6: Waveforms with A1=5 V and A2=1 V with small
signal applied in the highest frequency.

It is possible to observe in the transient that the envelope
is distorted, and the carrier is a pure sinusoidal, that is, the
validity of small signals is only for the carrier. Thus, using
QPSS, the points for imposing small signals to the envelope
must be imprecise, and the points for imposing small signals
to the carrier must be accurate, which is in fact observed in
Fig. 6.

The Fig. 7 shows the voltage across capacitor C1 using the
PAC, and considering small signals for the highest frequency.

Fig. 7: Waveforms with A1=5 V and A2=1 V with small
signal applied in the highest frequency.

It is noticeable that the PAC results are very similar to those
obtained by the transient, validating the case of imposition of
small signals for the highest frequency.

V. CONCLUSIONS
As proposed in this work, it was possible to verify the

possibility of imposing small and large signals for different
tones using QPSS and PAC. For QPSS, changing which tone
receives small signals is done by varying the number of
harmonics considered at each frequency. For the PAC, this
change is made by changing which frequency is considered
the greatest amplitude, and the imposition of small signals in
one tone is obligatory.

The QPSS takes into account the distortions caused by the
intermodulation of the signals, resulting in the inaccuracy of
the points depending on the situation that applies small signals
to the circuit and the way of this imposition differs depending
of the considered tone. Therefore, it must be considered in the
analysis which of the two frequencies the small signals will
be imposed. Also, the imposition of small signals in one tone
is not necessary.

However, in PAC, changing the frequency that receives
small signals results in similar values, thus the variation is
irrelevant to the method.
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