Synthesis of an Amber 23 Open-Core Processor

Leonardo R. Gobatto, Jilia D. Craide, Jonas F. Gava, Vitor V. Bandeira, Ricardo Augusto da Luz Reis
Universidade Federal do Rio Grande do Sul (UFRGS)
Institute of Informatics
Porto Alegre, RS, Brazil
Irgobatto @inf.ufrgs.br, jdcraide @inf.ufrgs.br, jonas.gava@inf.ufrgs.br, vvbandeira@inf.ufrgs.br, reis @inf.ufrgs.br

Abstract—The present work implemented the Logical Design
and most of the Physical Design of the open code processor
Amber 23, generating an integrated circuit in the GDSII stream
format, which has a maximum frequency of 195MHz, a density
of 6,896% and power consumption of 77,767mW.

Index Terms—Amber 23, open-source, integrated circuits, logi-
cal design, physical design, OpenCores, Verilog, microprocessors,
microelectronics

I. INTRODUCTION

The objective of the present work is to implement the Log-
ical Design and most of the Physical Design of the Amber 23
open-source processor, available on the OpenCores repository,
using the Design Flow of Cadence. Beyond that, the design
aimed to maximize the integrated circuit clock frequency and
do the density, power, slack timing, connectivity, and geometry
verification.

II. AMBER 23

Amber [1] is a 32 bits RISC processor compatible with
ARM® v2a ISA (Instruction Set Architecture) and supported
by GNU Toolset. In the OpenCores platform the Amber
Project is classified as: Design done, FPGA proven, Specifica-
tion done, and OpenCores Certified, it also says it has a stable
development status, is compatible with WishBone, and has an
LGPL license. There are two versions in the Amber Project
core, Amber 23 and Amber 25, both compatible between
themselves and with the same ISA.

The main differences between the cores are that Amber
23 has a 3-stage pipeline (fetch, decode and execute), a
single unified cache for instructions and data, 32-bit Wishbone
interface, and the ability to reach 0.75 DMIPS per MHz. While
Amber 25 gets about 15% better performance as it has a
5-stage pipeline (fetch, decode, execute, memory, and write-
back), two separate caches for instructions and data, 128-bit
Wishbone interface, and a capacity to reach 1.05 DMIPS per
MHez. In this paper, the focus is on Amber 23.

Both cores are described in Verilog 2001, and are optimized
for synthesis on FPGAs, being tested on the Xilinx SP605
Spartan-6 board, in which the Amber 23 occupies 32% of the
LUTs (Look Up Tables) of the board and has a frequency of 40
MHz. A frequency of 80 MHz was obtained in the synthesis
on a Xilinx Virtex-6 FPGA, but the core was not fully tested
on the device. The Linux 2.4 kernel was booted to verify the
circuit.

III. METHODOLOGY

As stated in [2] ”A design flow is a set of procedures
that allows designers to progress from a specification for a
chip to the final chip implementation in an error-free way”.
Cadence’s [3] standard cell design flow was used to implement
the Amber 23 circuit. This flow is divided into 2 major
stages: the Front-end and the Back-end. The Front-end is the
initial part of the chip design and is divided into two sub-
steps: the System Design and the Logical Design. The System
Design is where the chip and microarchitecture specifications
are defined, followed by the Logical Design, where the logic
synthesis of the chip described in an RTL (Register Transfer
Level) language is performed, resulting in a netlist. The Back-
end is where the Physical Design stage takes place, where the
placement and routing of the chip are made, from the netlist
obtained in the logical synthesis, and finally, the layout for
manufacturing is generated. The Amber 23 Project has already
provided the entire System Design stage, so in this paper, the
Logical Design and part of the Physical Design were carried
out.

To perform the RTL simulations two software were used, a
Cross-compiler from Source Forgery to generate the memory
files and Cadence SimVision™ to execute the simulation itself.
To perform the logical synthesis, Cadence’s GENUS™ tool
and the XFab cell library, which uses 180nm technology,
were used. For the physical synthesis, the Cadence Innovus™
software was used.

IV. LoGICAL DESIGN
A. RTL Simulation

The first step in the design is the RTL simulation, it
serves to verify if the Amber 23 circuit described at a logical
level is in accordance with the expected operation, that is,
equivalent to the specifications from the System Design. This
code at the logical abstraction level is called RTL (Register
Transfer Level) and is described using a Hardware Description
Language (HDL). The most used RTL languages are Verilog
and VHDL, which allow describing the design, operation,
and organization of electronic circuits. In the case of this
design, the specifications are that the system can execute the
ARM® v2a instruction set, providing the testbench with the
initialization of version 2.4 of the Linux kernel.

Amber 23 has a testbench with 65 programs [4] that test all
parts of the circuit, examples: cache, branches, instructions,

data flow, among others. For the execution of this work, almost
all 65 tests were performed, except for some that used or
needed external modules to work. In each of these tests, there
is a success subroutine, where the value 17 is written in register
10 if the test has passed 100%. So, it is possible to check in
a practical way which tests are passing and which are not.

B. Design Constraints

During the logic pre-synthesis, the design constraints will
be defined, which describe the clock characteristics of the
circuit, such as: transitions, uncertainty, input and output de-
lays, waveform transition, among others. For this purpose, the
constraints.sdc file was created, in which the clock and other
attributes, such as transition times and delay, were defined.

Next, was created the file with the script used for synthesis,
the setup.tcl, in which the use of MOSST cells was configured,
that is, Standard cells and not Low Power cells; and the vari-
ables SYN_EFF and MAP_EFF, which identify the effort used
to optimize synthesis and mapping. During the simulations
performed in this project, SYN_EFF and MAP_EFF were
changed in the setup.tcl file, as well as the clock period in
the constraints.sdc file, the latter being modified according to
the desired frequency in the simulation.

C. Logical Synthesis

The logical synthesis step consists of parsing, translating,
optimizing, and mapping an RTL code to a specific pattern
in a cell library. The main objectives of this synthesis are:
to minimize area, minimize power, maximize performance,
quickly produce accurate and functional models and produce
accurate and predictable results.

The inputs for this step are the RTL codes, design con-
straints, and cell libraries, that is, the Amber 23 files written
in Verilog, the constraints.sdc file and the setup.tcl file. As
output, the synthesis generates a Gate Level Netlist (GLD)
description using an HDL.

One of the objectives of RTL synthesis in this design was to
seek the maximum frequency at which the circuit could work
correctly, that is, without errors. Another measure considered
is the slack, which is the time between the desired arrival
of a signal and the actual arrival of the signal, where we
seek to avoid negative slacks, in which the signal would be
delayed. Positive slack indicates that it is still possible to make
improvements and slack zero is ideal, in which the system
works at the desired frequency.

The first round of simulations was done with both
SYN_EFF and MAP_EFF variables set to low optimization
effort. The synthesis was performed several times in order to
progressively increase the simulation frequency according to
the table 1. With this low-effort configuration, the maximum
frequency obtained was 165 MHz.

For the purpose of comparison, the values of the variables
SYN_EFF and MAP_EFF were changed for medium effort
and the maximum frequency was recalculated, again perform-
ing successive simulations as it is possible to see in the table
IT obtaining the maximum frequency of 195 MHz. Finally,

Table 1
LOGICAL SYNTHESIS LOW EFFORT

Frequéncia [MHz] ‘ Slack [ps] ‘ Poténcia [tW] ‘ Células | Area total [pum?]
40 0

17.327,483 9.158 383.955
80 0 36.345,834 9.819 397.352
160 0 90.403,686 12.218 455.214
165 0 48.760,273 12.121 452.383
170 -84 94.109,382 12.555 463.036
180 -149 59.141,919 13.894 496.725
Table IT

LOGICAL SYNTHESIS MEDIUM EFFORT

Frequéncia [MHz] | Slack [ps] | Poténcia [4W] | Células | Area total [pum?]

165 0 71.336,100 9.981 387.170
180 0 80.729,357 10.664 402.440
190 0 96.531,460 11.377 421.306
195 0 97.891,692 11.703 431.948
200 -10 95.552,228 11.777 434.458

simulations were performed with both variables with high
effort, according to the table III. And the final maximum
frequency was 195 MHz the same one found with medium
effort, but the power was slightly lower. Therefore, the final
clock obtained has a period of 5.1282 ns and high effort
variables were used to perform the physical synthesis. In figure
1 you can see the result of the logical synthesis carried out
with the best found parameters.

Figure 1. Logical Synthesis result

V. PHYSICAL DESIGN
A. Comment about 10 PADs

For the final synthesis in this paper, IO PADs were created,
which are responsible for connecting internal signals of the
integrated circuit with external pins of the chip. During the
development of this design, physical syntheses were performed

Table III
LOGICAL SYNTHESIS HIGH EFFORT
Poténcia [puW]

Frequéncia [MHz] ‘ Slack [ps] ‘ Células ‘ Area total [pm?]

190 0 95.149,321 11.338 423.682
195 0 92.287,847 11.421 423.008
200 -32 96.657,607 11.847 439.104

without the use of I0 PADs, which obtained much higher
densities of about 67.194%, as shown in the figure 2. So,
the final circuit is limited by the placement of the PADs. To
create the PADs, it was: created an iopads module in Verilog;
created a top module in Verilog to encompass Amber 23 and
the iopads module created; insertion of modules created in
Verilog resulting from Logic Synthesis; and generated the 10
Pads file, iopads.io, to position the PADS in Innovus.

Figure 2. Phisical Syntesis without IO PADs

B. Floorplanning

Floorplanning is the process of allocating space for modules
and circuit functional blocks across the chip in order to im-
prove communication between modules and make it possible
to derive the final die size. It was defined as a floorplanning
of square format, which seeks to obtain 70% of density with
margins of 3 pm.

C. Power Planning

In the Power Planning stage, a power distribution network
is created, which provides voltage and ground for all modules
of the design. It is a very important step, as problems related
to power can even lead to failures due to problems with
electromigration effects. In this step, horizontal lines of GND
and VDD were created in the circuit design.

D. Placement

Placement is the process of placement the standard cells on
the floorplan already defined, intending to minimize the length
of the wires. An important aspect of the cell library, to allow
automatic placement, is that the cells must have a constant
height among each other, which can result in a larger area
and performance loss compared to full-custom circuits.

The interface of the system was used to carry out the full
placement of the design and obtain the placement of the cells.
The report on the use of metal layers for placement show
some errors and warnings, mainly due to scan chains, which

are flip-flop connection patterns, but these will be resolved in
future steps.

After placement, a pre-CTS optimization step was carried
out, the main problems that can be solved in this step are:
increasing and decreasing the size of the cells; adding buffers
on networks, and resynthesize ways to improve timing. In the
results obtained after the optimization it was possible to notice
that there is still a path violation and a density of 6.704%.

E. CTS

In this step, the clock tree (CTS - Clock Tree Synthesis)
is synthesized, which synchronizes the clock throughout the
chip, minimizing clock skew and latency. For this, buffers
and inverters are inserted in the clock paths. The operation
to generate the tree results in the time analysis that show the
minimum or maximum required for each parameter where,
for example, the clock skew is 128.4 ps which is below the
required 205.1 ps.

Next, a post-CTS optimization was performed, whose main
objective is to optimize routes that may have been disturbed
by the CTS and to optimize the clock tree itself. Observing
the results, it is possible to see that the clock slack is zero,
the density has improved a little, reaching 6.873%, and there
are no more path violations.

F. Routing

Routing is an important step in the circuit generation, as
it is responsible for connecting the cells, macros, RAMs, and
inputs and outputs pins, in the routes specified by the netlist, in
order to try to minimize congestion and critical paths. Routing
is usually divided into two steps, global and detailed routing.
The global routing abstracts the routing problem by breaking
the chip area into rectangular portions and tries to minimize the
connection path and more congested cells of wires in the same
area. The detail route takes into account the real geometry and
design rules, as its objective is to make all connections without
any violation, trying to follow the plan traced by the global
route.

TCL code was used to perform all the routing steps, the first
command performed the global route. The following command
executed the route detail, finally, the last command performed
the global route detail, which gave the wire and metal usage
resulting in a total wire length of 820620 um.

After doing the Routing, a Post-Route optimization is per-
formed, which is more accurate than the previous optimiza-
tions steps, because it has real wires and not only estimated
ones, being able to make more advanced and aggressive
changes. This resulted in no path violations, a small improve-
ment in the density, that was 6.896%, and the timing results,
where again slack is zero.

G. Fillers

One of the last steps of the Physical Design was to add
filler cells, also called dummy cells, in the empty areas of
the circuit. They are never activated by the circuit, their only
purpose is to increase the uniformity of the circuit layers and
thus facilitate the fabrication process.

Once again, TCL commands were used to generate the
fillers, the result was the insertion of a total of 105620 filler
cells, in which the cells named FEED are the dummys of the
used library. There were no path violations and the density
remained at 6.896%, however it is interesting to note that the
density with filler cells is 100%. In this step, a geometry check
was also carried out, which did not show any errors.

VI. RESULTS AND ANALYSIS

After completing all the steps, several checks were carried
out to guarantee the quality and obtain some parameters of
the circuit. The first analysis was the power analysis, the
result of this Power Report was a total energy of 77,767mW,
which represents a significantly lower consumption than the
92,287mW that had been estimated in the Logical Synthesis,
and the leakage power was almost zero. After that, parasitic
resistances were extracted and delays were calculated with
no errors. Using Innovus’ interface, it was possible to verify
connectivity and circuit geometry, respectively. The results
were a success, with zero violations and warnings.

As a result of the entire process, after all the steps and
verifications, the circuit in the figure 3 was obtained.

Figure 3. Final circuit

VII. PROBLEMS

During the RTL simulation stage of the project, several
problems were encountered, the first of which was the config-
uration of the file_list.f file, which is used to quote and sort
Verilog files, to fix dependencies between them, as Amber is a
big project it became complex. Another problem is that some
files contained an input called “do”, which had to be renamed
as this is a Verilog reserved word.

Finally, even in the RTL simulation, it was not possible to
install the GNU cross-compiler from Code Sourcery, necessary
to compile the memory, from the official website due to
regulatory problems, making it necessary to use the Internet
Archive Wayback Machine, an archiving mechanism for old
sites, to get a valid 2011 link that allowed the download.

During the Physical Design, there were problems in the first
attempt to make the Power Plan, before the simulation with IO
PADs, because both horizontal and vertical power lines were
created. However, as the Amber 23’s circuit is large, there
were violations due to overlap, and this problem was solved
by removing the vertical feed lines.

Finally, as an attempt to improve the circuit density, other
rectangular layouts were tried for the chip, but these resulted
in several overlap violations without much improvement in
density. One of these attempts is illustrated in the figure 4
where it is possible to see several overlap errors in the bottom
left corner.

.Ntlil_l‘ll‘lllllllllllll&l.ﬂl bkt F I ESE "!l!llIl‘!ViH'I!l!'J‘F'!!
3 L | ‘ ‘ i H i ‘ ‘

i .
il &

Figure 4. Rectangular circuit with overlap issues

VIII. FINAL CONSIDERATIONS

In this paper, we discussed the implementation of the Amber
23 Logical and Physical Design, generating an integrated
circuit with a frequency of 195 MHz, with total energy
consumption of 77,767mW and density of 6.896%. In spite of
the progresses achieved, much work remains. One direction for
further research is to test different design flows to understand
how they impact the occupation and power of the present
circuit.

IX. ACKNOWLEDGMENTS

Thanks to Cadence Design Systems Inc. for providing
the necessary software and excellent support material, Conor
Santifort for developing and maintaining the Amber Project,
and the OpenCores platform for making available and hosting
such a library of hardware projects, without which this work
would not be possible.

REFERENCES

[1] Santifort, Conor. ”Amber 2 Core Specification”, Amber Open Source
Project.OpenCores, 2015.

[2] N. Weste e D. Harris. "CMOS VLSI Design, A Circuits and Systems
Pesrpective.” Pearson/Addison-Wesley, 2011. ISBN 9780321547743.

[3] ”BDO03: Digital Physical Design®, Version 1.0. IC Brazil Program;
Cadence Design Systems Inc, 1990-2008.

[4] Santifort, Conor. "User Guide“, Amber Open Source Project. Open-
Cores, 2013.

