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Abstract— This study addresses the behavioral modeling of 

power amplifiers (PAs). The objective of this work is to analyze 

the potential benefits in terms of improving the trade-off 

between accuracy and complexity by using a memory 

polynomial (MP) with sparse nonlinearities and delays and also 

with the memories values based on the moving averages of the 

said signal. The complete and sparse MP models were 

implemented in MATLAB using floating point double-precision 

arithmetic, as well as the moving average, and with that we were 

able to estimate the direct and inverse transfer characteristics of 

a class AB PA. The number of coefficients was fixed at 12, and 

it was explored variations in power and memory values. The 

results were analyzed using the normalized mean square error 

(NMSE). The introduction of moving averages allowed us to 

reduce NMSE by up to 0.3514 dB compared to not using it. The 

lowest error, -27.5138 dB, was achieved in the direct modeling 

estimation.  
Keywords— mathematical modeling, sparse delays, moving 

averages, memory polynomial, power amplifier.  

I. INTRODUCTION 

Power amplifiers (PAs) are essential components in 

modern wireless communication systems, serving to boost 

the input signal's strength, ensuring reliable communication, 

high quality, and extended signal coverage. Mathematical 

modeling, a common approach, employs mathematical 

structures and equations to represent real-world situations, 

aiding in scenario prediction [1]. Recognizing the 

significance of PAs, this study aims to simulate PA behavior 

by utilizing input and output measurements alongside a 

mathematical model. Two modeling approaches, direct and 

inverse, were applied, each illustrated in Figure 1, 

showcasing their distinctions. 

 
Fig. 1. The difference between direct modeling and inverse modeling.  

From Figure 1, we can perceive that in direct modeling, 

the input of our model is the input of the PA itself, while the 

output is the output of our PA, with an error between the 

measured and the estimated output of the PA that was 

calculated at the end of the work. In inverse modeling, on the 

other hand, the input of the model is the output of the PA and 

the output of the model is the input of the PA, with an error 

between the measured and estimated output of the PA that 

was also calculated throughout the work. 

When we have nonlinearities and the effects of memory 

are small, an alternative is the use of Memory Polynomials 

(MP) [2]. Since MP models are linear in coefficients, they are 

simpler to understand and interpret, as well as much easier to 

implement. This is precisely why they were used in this study. 

However, when polynomial orders are high and memory 

effects are long, the modeling accuracy decreases. Therefore, 

we fixed the number of coefficients at 12, which is P*(M+1), 

where 𝑃 and 𝑀 are the polynomial order truncation and the 

memory length, respectively. This means we have three 

scenarios: when P = 2 and M = 5, when P =3 and M = 3 and 

when P = 4 and M = 2. 

Previously, the use of sparse delays have been suggested 

[3] and also the use of a MP with sparse nonlinearities, with 

the simultaneous application of sparse nonlinearities and 

delays [4] to enhance the balance between accuracy and 

intricacy. However, the objective of this work is to analyze 

the potential benefits, in terms of enhancing the balance 

between accuracy and complexity of using a MP with sparse 

nonlinearities, particularly with the simultaneous application 

of sparse nonlinearities and delays with the memories values 

based on moving averages of the sampled signal. Moving 

averages is a mathematical technique that computes the 

average of a group of values within a moving window [5]. 

Utilizing moving averages based on past instances enables us 

to capture the temporal traits and memory impacts of the 

system efficiently. 

II. REVIEW OF THE LITERATURE 

Originally [2], a MP with all powers of amplitude, that is 
linear in its coefficients, was proposed. This MP was used in 
this work, and it has the following equation:  

𝑦̃(𝑛) =  ∑ ∑ 𝑏̃𝑝,𝑚|𝑥̃(𝑛 − 𝑚)|𝑝−1𝑥̃(𝑛 − 𝑚)

𝑀

𝑚=0

𝑃

𝑝=1

          (1) 

where 𝑃 and 𝑀 are the polynomial order truncation and 
the memory length, respectively, 𝑥̃(𝑛)  and 𝑦̃(𝑛)  are the 
complex-envelope at the PA input and output, respectively 

and 𝑏̃2𝑝−1,𝑚 are complex-valued coefficients.  

Table I aims to exemplify what would be the sparsity in 

memory and in power, where we have the output 𝑦̃(𝑛) of 

equation (1) for when P = 2 and M = 1, for the complete MP, 

INVERSE 

MODELING

DIRECT

MODELING

IN_PA

+

error

- OUT_PA

error

PA

mailto:rizo@ufpr.br
mailto:eduardo.lima@ufpr.br


P = 2 and M = 2 for the MP sparse in memory and P = 3 and 

M = 1 for the MP sparse in power. 

 
Table I. The difference between a complete MP, a sparse MP in memory and 

a sparse MP in power. 

COMPLETE MP 

𝑦̃ (𝑛) = 𝑏̃1,0|𝑥̃(𝑛)|0𝑥̃(𝑛)+ 

𝑏̃1,1|𝑥̃(𝑛 − 1)|0𝑥̃(𝑛 − 1)+ 

𝑏̃2,0|𝑥̃(𝑛)|1𝑥̃(𝑛)+ 

𝑏̃2,1|𝑥̃(𝑛 − 1)|
1

𝑥̃(𝑛 − 1) 

MP SPARSE IN 

MEMORY 

𝑦̃ (𝑛) = 𝑏̃1,0|𝑥̃(𝑛)|0𝑥̃(𝑛)+ 

𝑏̃1,2|𝑥̃(𝑛 − 2)|0𝑥̃(𝑛 − 2)+ 

𝑏̃2,0|𝑥̃(𝑛)|1𝑥̃(𝑛) + 

𝑏̃2,2|𝑥̃(𝑛 − 2)|
1

𝑥̃(𝑛 − 2) 

MP SPARSE IN POWER 

𝑦̃ (𝑛) = 𝑏̃1,0|𝑥̃(𝑛)|0𝑥̃(𝑛) + 

𝑏̃1,1|𝑥̃(𝑛 − 1)|0𝑥̃(𝑛 − 1) 

+ 𝑏̃3,0|𝑥̃(𝑛)|2𝑥̃(𝑛) + 

𝑏̃3,1|𝑥̃(𝑛 − 1)|
2

𝑥̃(𝑛 − 1) 

 

     After analyzing the table, we can notice that when the MP 

is sparse in memory, there are missing memory elements, 

which in this work are represented by the elements varying 

from 𝑥̃(𝑛 − 𝑚) ,  when compared to the complete MP. 

Whereas when the MP is sparse in power, it is evident that, 

compared to the complete MP, power elements are missing, 

which in this work are represented by elements varying from 

|𝑥̃(𝑛 − 𝑚)|𝑝−1. The sparsity was applied either to power or 

simultaneously to both power and delay.  

     The execution of the moving average proceeded in 

accordance with the guidelines depicted in Figure 2, and this 

implementation occurred for the MP with all powers, as well 

as for both direct and inverse modeling. 

 
 Fig. 2. The implementation of moving averages.  

 

     It was used a uniform window size for all the moving 

averages, and we varied the value of D from 1 to 6 throughout 

the simulations. This enables us to capture the temporal traits 

and memory impacts of the system efficiently and find out 

which value of D results in the best model possible. The 

results were shown for the best value of D corresponding to 

the respective modeling. 

     The use of moving averages enables us to accurately 

compare short-term and long-term memory effects and the 

temporal characteristics of the power amplifier. The proposed 

model, depicted in Fig. 2 as a simplified block diagram, 

incorporates the equation of the MP, in this case it would be 

the equation (1), running in parallel with the PA to be 

modeled, where 𝐷 ∗ 𝑍−1 represents a unit delay block 

applied D times. In this method, M denotes the number of 

moving averages used, M · D indicates the memory length of 

the model and 𝑒 is the error. Since the parameters M and P of 

the series remain constant, the number of coefficients in the 

series does not change. 

     The maximum polynomial order is 5, it starts at 1 and goes 

until 5, and the maximum memory duration is also 5, except 

it starts at 0 and then goes until 5, which means we have 5 

values for P and 6 values for M. These selections were made 

arbitrarily with the aim of attaining models of equivalent 

complexity, as measured by the number of coefficients. This 

ensures a fair comparison across the various approaches. 

     Regarding the resulting models, we would have what is 

presented in Table II, for values that are fixed or varying, 

where S means the number of scenarios we would have. 

 
Table II. Number of scenarios when the values of M and P are fixed or 
varying. 

 
VALUES 
FIXED 

VALUES VARYING 

POWER 
S = 1 

𝑆𝑃
5 =  

5!

𝑃! ∗ (5 − 𝑃)!
    

MEMORY 
S = 1 

S =  
6!

𝑀! ∗ (6 − 𝑀)!
    

 

      It is fair to note that when we only have one scenario of 

power and memory, we would have the resulting scenarios 

(1, 2, 3) and (0, 1, 2), assuming three different powers or 

delays, respectively for P and M. And for values that are 

varying we would have, for example for when P = 3, 10 

scenarios and those would be:  (1, 2, 3); (1, 2, 4); (1, 2, 5); (1, 

3, 4); (1, 3, 5); (1, 4, 5); (2, 3, 4); (2, 3, 5); (2, 4, 5); (3, 4, 5).   

    The NMSE was calculated in dB as shown in the equation 

bellow: 

𝑁𝑀𝑆𝐸𝑑𝐵 = 10𝑙𝑜𝑔 
∑ |𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|2𝑁

𝑛=1 

∑ |𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|2𝑁
𝑛=1 

        (2) 

     where 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured output validation value 

and 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is the estimated output signal. N is the number 

of samples of validation, 2001.  

III. RESULTS 

This section presents the results of simulations conducted 

in a case study aimed at exploring potential enhancements in 

the accuracy of mathematical modeling. Across all scenarios, 

we considered four possibilities of models: ones where all 

memory values remained fixed while power values varied, 

ones where power values remained fixed while memory 

values varied, models where both power and memory varied, 

and models where both power and memory were fixed. 

Having fixed values means there are no sparsities in memory 

or power, whereas having varying values means there are 

sparsities, either in memory or in power. Since the general 

scenario involves variations in both values, it is expected that 

the most optimal results will be observed in these cases. 

PA

MP 
EQUATION

+
e
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The utilized power amplifier is a class AB power 

amplifier employing a HEMT fabricated in GaN technology. 

Input-output data were collected using a Rohde & Schwarz 

FSQ vector signal analyzer (VSA) operating at a sampling 

frequency of 61.44 MHz. The extraction sample size was 

3221, and the validation sample size was 2001 for both input 

and output in all cases listed above.  

     To assess the presumed accuracy, MATLAB with 

floating-point double precision was employed, alongside the 

least squares method using the '\' command in MALAB. The 

implementation of the MP, alongside with the inverse and 

direct modeling and the moving averages will be 

implemented in MATLAB and the model accuracy will be 

evaluated using the Normalized Mean Square Error (NMSE).  

Simulation results are reported in two subsections. 

Subsection IV.A uses direct modeling and IV.B uses inverse 

modeling, both with the MP with all powers of amplitude, 

according to (1).  

A. Direct modeling using MP with all powers  

    When direct modeling was used in conjunction with all 

powers and moving averages for the sparsed delays, the best 

values of NMSE that were found were for D = 2 and those 

values of NMSE, in dB, are reported in Table III.  

 
Table. III. Values of NMSE, in dB, with direct modeling with moving 
averages. 

Values 

of P and 

M 

P and M 

are 

varying 

P is 

fixed 

and M is  

varying 

P is 

varying 

and M is 

fixed 

 P and M 

are fixed 

P = 2 

 M = 5 

-27.0296 

 

-26.1002 -27.0296 -26.1002 

P = 3 

M = 3 

-27.5138 -27.4464 -27.2354 -27.1287 

P = 4 

M = 2 

-26.3039 -26.2935 -26.3005 

 

-26.2935 

 

    After analyzing Table III, we can observe that the lowest 

NMSE, in dB, value is found when P is 3 and M is 3 when 

both power and memory values are varying.  

 
Table IV. Values of NMSE, in dB, with direct modeling without moving 

averages. 

Values 

of P and 

M 

P and M 

are 

varying 

P is 

fixed 

and M is  

varying 

P is 

varying 

and M is 

fixed 

P and M 

are fixed 

P = 2 

 M = 5 

-26.7330 -26.4295 -26.7330 -26.4295 

P = 3 

M = 3 

-27.1624 -27.1509 -27.0535 -27.0223 

P = 4 

M = 2 

-27.0886 -27.0513 -27.0099 -26.9820 

 

     Also, after comparing those values with the values of 

Table IV, where we can see the values of NMSE in dB for 

when moving averages weren’t used [4], we can observe that 

when we applied moving averages, we were able to reduce 

the NMSE in 50% of the cases. The best case scenario was 

the same for both with or without the use of moving averages, 

when P = 3 and M = 3, but when it was used we had in NMSE 

decreased in 0.3514 dB. 

     In Figure 3, we have the output amplitude versus the input 

amplitude (AM-AM) plots for the best case shown in Table 

III, for both measured and estimated data.  

Fig. 3. AM-AM plot for the best case when direct modeling was 

applied with moving averages. 

B. Inverse modeling using MP with all powers  

When inverse modeling and moving averages for the 

sparsed delays were used the best NMSE was for D = 1 and 

those values of NMSE, in dB, are reported in Table V. 

 
Table V. Values of NMSE, in dB, with inverse modeling with moving 

averages. 

Values 

of P and 

M 

P and M 

are 

varying 

P is 

fixed 

and M is 

varying 

P is 

varying  

and M is 

fixed 

P and M 

are fixed 

P = 2 

 M = 5 

-24.5893 -24.3585 -24.5893 -24.3585 

P = 3 

M = 3 

-24.6736 -24.4991 -23.6985 -24.6135 

P = 4 

M = 2 

-23.9191 -23.9167 -23.7195 -23.6625 

 

     We can observe that the best value of NMSE, in dB, 

happened when P is 3 and M is 3, when both power and 

memory values were varying.   

     
Table VI. Values of NMSE , in dB, with inverse modeling without moving 

averages. 

Values 

of P and 

M 

P and M 

are 

varying 

P is 

fixed 

and M is  

varying 

P is 

varying 

and M is 

fixed 

P and M 

are fixed 

P = 2 

 M = 5 

-25.1013 -25.0277 -25.1013 -25.0277 

P = 3 

M = 3 

-25.5866 -25.4158 -24.8342 -24.7264 

P = 4 

M = 2 

-24.9380 -24.9380 -24.0994 -24.0994 

 

But this time, after the use of inverse modeling with moving 

averages for the sparsed delays we can notice that the value 

of the NMSE increased in all models when compared to the 

values of inverse modeling for the same case but without the 

use of moving averages [4]. The best case scenario was the 



same for both with or without the use of moving averages, 

when P = 3 and M = 3, but when it was used we had in NMSE 

increased in 0.9130 dB, as it is seen on Table VI. 

     In Figure 4, we have the AM-AM plots for the best case 

when inverse modeling was used for all powers, for both 

measured and estimated data.  

 
 Fig. 4. AM-AM plot for the best case when inverse modeling was applied. 

IV. CONCLUSION 

      The main objective of this work was to perform the  

mathematical modeling of a PA using MP-based models and 

analyze the results after using the least squares method in 

MATLAB, for the direct and inverse modeling, as well as 

using moving averages for calculating the memories 

values. The work presents metrics that determine which was 

the best modeling among the two used, direct and inverse. 

      The results presented show that the best NMSE was 

achieved when using direct modeling, specifically when the 

values of P and M are varying, and when the power values 

are equal to 3 and the memory values are equal to 3. Using 

moving averages helped us achieve a decreased NMSE in 

0.3514 dB when compared to the same scenario, for the same 

modeling with the same values but without the 

implementation of moving averages. It is also noticeable that 

when inverse modeling was used, the values increased by 

0.5120 dB up to 1.0213 dB compared to the values when 

inverse modeling was used but without the implementation of 

moving averages.  

ACKNOWLEDGMENT  

 The authors would like to acknowledge the financial 
support provided by National Council for Scientific and 
Technological Development (CNPq) under the Program 
PIBITI UFPR 2022. 

REFERENCES 

[1] L. Ljung, System Identification: Theory for the User. 

Englewood. 

[2] J. Kim and K. Konstantinou, “Digital predistortion of wideband 

signals based on power amplifier model with memory,” 

Electron. Lett., vol. 37, no. 23, pp. 1417–1418,Nov. 2001..   

[3] H. Ku and J. S. Kenney, “Behavioral modeling of nonlinear RF 

power amplifiers considering memory effects,” IEEE Trans. 

Microw. Theory Tech., vol. 51, no. 12, pp. 2495–2504, Dec. 

2003.  

[4] M. E. Rizo, E. G. Lima, “Memory polynomials with sparse 

delays and nonlinearities applied to power amplifier 

mathematical modeling”, 39th South Symposium on 

Microelectronics, 2024, in prees.  
[5] F. P. Ribeiro, E. G. Lima, “Behavioral modeling of radio 

frequency power amplifiers using a multiple depth memory 

volterra series”, Microelectronics Students Forum, 2023, Rio 

de Janeiro. Proceedings of the XXIII Microelectronics Students 

Forum, 2023. p. 1-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


